Classification of Coronavirus (covid-19) Fromx-Rayandctimages Using Shrunken Features

dc.contributor.author Öztürk, Şaban
dc.contributor.author Özkaya, Umut
dc.contributor.author Barstuğan, Mücahid
dc.date.accessioned 2021-12-13T10:34:47Z
dc.date.available 2021-12-13T10:34:47Z
dc.date.issued 2021
dc.description.abstract Necessary screenings must be performed to control the spread of the COVID-19 in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the suspicious test results led the researchers to focus on different fields. Fast and accurate diagnoses are essential for effective interventions for COVID-19. The information obtained by using X-ray and Computed Tomography (CT) images is vital in making clinical diagnoses. Therefore it is aimed to develop a machine learning method for the detection of viral epidemics by analyzing X-ray and CT images. In this study, images belonging to six situations, including coronavirus images, are classified using a two-stage data enhancement approach. Since the number of images in the dataset is deficient and unbalanced, a shallow image augmentation approach was used in the first phase. It is more convenient to analyze these images with hand-crafted feature extraction methods because the dataset newly created is still insufficient to train a deep architecture. Therefore, the Synthetic minority over-sampling technique algorithm is the second data enhancement step of this study. Finally, the feature vector is reduced in size by using a stacked auto-encoder and principal component analysis methods to remove interconnected features in the feature vector. According to the obtained results, it is seen that the proposed method has leveraging performance, especially to make the diagnosis of COVID-19 in a short time and effectively. Also, it is thought to be a source of inspiration for future studies for deficient and unbalanced datasets. en_US
dc.identifier.doi 10.1002/ima.22469
dc.identifier.issn 0899-9457
dc.identifier.issn 1098-1098
dc.identifier.scopus 2-s2.0-85089486925
dc.identifier.uri https://doi.org/10.1002/ima.22469
dc.identifier.uri https://hdl.handle.net/20.500.13091/1170
dc.language.iso en en_US
dc.publisher WILEY en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject classification en_US
dc.subject coronavirus en_US
dc.subject COVID-19 en_US
dc.subject feature extraction en_US
dc.subject hand-crafted features en_US
dc.subject sAE en_US
dc.title Classification of Coronavirus (covid-19) Fromx-Rayandctimages Using Shrunken Features en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ozturk, Saban/0000-0003-2371-8173
gdc.author.scopusid 57191953654
gdc.author.scopusid 57191610477
gdc.author.scopusid 57200139642
gdc.author.wosid Ozturk, Saban/ABI-3936-2020
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 15 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 5 en_US
gdc.description.volume 31 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3049505831
gdc.identifier.pmid 32904960
gdc.identifier.wos WOS:000560227500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 86.0
gdc.oaire.influence 8.139866E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Machine learning methods
gdc.oaire.keywords Principal component analysis method
gdc.oaire.keywords Image classification
gdc.oaire.keywords coronavirus
gdc.oaire.keywords sAE
gdc.oaire.keywords Feature extraction methods
gdc.oaire.keywords Image analysis
gdc.oaire.keywords Diagnosis
gdc.oaire.keywords hand-crafted features
gdc.oaire.keywords Electrical and Electronic Engineering
gdc.oaire.keywords Unbalanced datasets
gdc.oaire.keywords Learning systems
gdc.oaire.keywords X rays
gdc.oaire.keywords feature extraction
gdc.oaire.keywords Data enhancement
gdc.oaire.keywords COVID-19
gdc.oaire.keywords Computerized tomography
gdc.oaire.keywords Clinical diagnosis
gdc.oaire.keywords Electronic, Optical and Magnetic Materials
gdc.oaire.keywords Deep architectures
gdc.oaire.keywords classification
gdc.oaire.keywords Image enhancement
gdc.oaire.keywords Computer Vision and Pattern Recognition
gdc.oaire.keywords Synthetic minority over-sampling techniques
gdc.oaire.keywords Software
gdc.oaire.popularity 8.300418E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration National
gdc.openalex.fwci 13.45152918
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 96
gdc.plumx.crossrefcites 62
gdc.plumx.mendeley 131
gdc.plumx.newscount 2
gdc.plumx.pubmedcites 47
gdc.plumx.scopuscites 108
gdc.scopus.citedcount 108
gdc.virtual.author Özkaya, Umut
gdc.virtual.author Barstuğan, Mücahid
gdc.wos.citedcount 67
relation.isAuthorOfPublication 04ccc400-06d6-4438-9f17-97fdca915bf4
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication.latestForDiscovery 04ccc400-06d6-4438-9f17-97fdca915bf4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Int J Imaging Syst Tech - 2020 - zt rk - Classification of Coronavirus COVID‐19 from X‐ray and CT images using shrunken.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format