Exploring Deep Learning Approaches for Walnut Phenotype Variety Classification

dc.contributor.author Yilmaz, Burak
dc.date.accessioned 2025-04-13T20:03:11Z
dc.date.available 2025-04-13T20:03:11Z
dc.date.issued 2025
dc.description.abstract The efficient classification of agricultural commodities like walnuts is crucial for assessing quality and managing the supply chain. This scholarly article analyses various deep learning and data science methods for walnut fruit classification. For this purpose, first, a dataset comprising images of walnuts from Chandler, Fernor, Howard, and Oguzlar varieties was collected. Two different experiments were conducted. In the first experiment, only deep learning methods were used as classifiers. In this experiment, InceptionV3 demonstrated the highest classification accuracy, followed by VGG-19 and VGG-16. In the second experiment, deep learning algorithms were used for feature extraction, followed by support vector machine (SVM), logistic regression (LR), and k-nearest neighbor (k-NN) algorithms for classification. These models resulted in an improvement in overall success rates. The most effective classification was achieved with the InceptionV3 and LR combination, achieving the highest success rate. These results highlight the efficacy of deep learning methodologies in swiftly and accurately classifying agricultural products based on visual information, indicating the potential to strengthen classification systems within the agricultural sector. en_US
dc.identifier.doi 10.1155/ijfo/9677985
dc.identifier.issn 2356-7015
dc.identifier.issn 2314-5765
dc.identifier.scopus 2-s2.0-105000667174
dc.identifier.uri https://doi.org/10.1155/ijfo/9677985
dc.identifier.uri https://hdl.handle.net/20.500.13091/9975
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof International Journal of Food Science
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Classification en_US
dc.subject Deep Learning en_US
dc.subject Inceptionv3 en_US
dc.subject K-Nn en_US
dc.subject Logistic Regression en_US
dc.subject Svm en_US
dc.subject Vgg-16 en_US
dc.subject Vgg-19 en_US
dc.subject Walnut en_US
dc.title Exploring Deep Learning Approaches for Walnut Phenotype Variety Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Yilmaz, Burak
gdc.author.scopusid 57195339649
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Yilmaz, Burak] Konya Tech Univ, Fac Engn & Nat Sci, Dept Software Engn, Konya, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 2025 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4408644195
gdc.identifier.pmid 40134410
gdc.identifier.wos WOS:001446965000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Nutrition. Foods and food supply
gdc.oaire.keywords TX341-641
gdc.oaire.keywords TP368-456
gdc.oaire.keywords Food processing and manufacture
gdc.oaire.keywords Research Article
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.1
gdc.opencitations.count 0
gdc.plumx.mendeley 11
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 0
gdc.virtual.author Yılmaz, Burak
gdc.wos.citedcount 0
relation.isAuthorOfPublication 0d00d843-15fc-494a-ab8b-d53cd7074530
relation.isAuthorOfPublication.latestForDiscovery 0d00d843-15fc-494a-ab8b-d53cd7074530

Files