Parkinson's Disease Recognition Using Gauss Map Based Chaotic Particle Swarm-Neural Network

dc.contributor.author Koyuncu, Hasan
dc.date.accessioned 2021-12-13T10:32:10Z
dc.date.available 2021-12-13T10:32:10Z
dc.date.issued 2019
dc.description 2019 International Conference on Engineering and Telecommunication, EnT 2019 -- 20 November 2019 through 21 November 2019 -- -- 158475 en_US
dc.description.abstract In detection of Parkinson's disease (PD), voice recordings are frequently appealed to reveal whether disease is available or not. The features extracted from these recordings are utilized as the input of classification methods. Herein, binary classification of features gains importance to accurately perform the PD detection. In this paper, we perform the classification of two well-known PD datasets including the features attained by recordings. Efficient hybrid classifiers are formed using the state-of-the-art optimization algorithms originated from particle swarm optimization (PSO). As an efficient classifier, neural network (NN) is determined as the main part of hybrid architecture. Sine map based chaotic PSO (SM-CPSO), dynamic weight PSO (DWPSO) and chaotic dynamic weight PSO (CDW-PSO) are considered to compare with Gauss map based CPSO (GMCPSO) on formation of hybrid classifiers and on classification of PD. For a detailed assessment, seven metrics (accuracy, AUC, sensitivity, specificity, g-mean, precision, f-measure) based comparison is realized, and 2-fold cross validation is handled to test the system. According to the results, GM-CPSO-NN achieves to remarkable performance among other hybrid methods and also outperforms to the recent literature studies. Consequently, a comprehensive study about PD recognition is realized, and a detailed comparison of hybrid NNs is presented on pattern classification. © 2019 IEEE. en_US
dc.identifier.doi 10.1109/EnT47717.2019.9030560
dc.identifier.isbn 9781728135649
dc.identifier.scopus 2-s2.0-85082878503
dc.identifier.uri https://doi.org/10.1109/EnT47717.2019.9030560
dc.identifier.uri https://hdl.handle.net/20.500.13091/930
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2019 International Conference on Engineering and Telecommunication, EnT 2019 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Chaotic en_US
dc.subject Gauss map en_US
dc.subject Hybrid classifiers en_US
dc.subject Optimization en_US
dc.subject Parkinson's disease en_US
dc.subject Pattern recognition en_US
dc.title Parkinson's Disease Recognition Using Gauss Map Based Chaotic Particle Swarm-Neural Network en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 55884277600
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W3011429985
gdc.identifier.wos WOS:000790327700030
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.7539162E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.1368183E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.07364367
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 3
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Koyuncu, Hasan
gdc.wos.citedcount 1
relation.isAuthorOfPublication cb007ba5-2c13-4205-a2bf-53ae58be8fce
relation.isAuthorOfPublication.latestForDiscovery cb007ba5-2c13-4205-a2bf-53ae58be8fce

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Parkinsons_Disease_Recognition_using_Gauss_Map_based_Chaotic_Particle_Swarm-Neural_Network.pdf
Size:
228.49 KB
Format:
Adobe Portable Document Format