Explainable Features in Classification of Neonatal Thermograms

dc.contributor.author Örnek, Ahmet Haydar
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2021-12-13T10:34:38Z
dc.date.available 2021-12-13T10:34:38Z
dc.date.issued 2020
dc.description 28th Signal Processing and Communications Applications Conference (SIU) -- OCT 05-07, 2020 -- ELECTR NETWORK en_US
dc.description.abstract Although deep learning models perform high performance classifications (+90% accuracy), there is very limited research on the explanability of models. However, explaining why a decision is made in computer-assisted diagnoses and determining why untrained deep learning models cannot be trained is crucial for medical professionals to evaluate the decision. In this study, 190 thermal images of 38 different neonates who were hospitalized in the Neonatal Intensive Care Unit of the Faculty of Medicine, Selcuk University were trained to perform an ESA model unhealthy-healthy classification and visualization of the intermediate layer outputs. The train-validation-test accuracy of the model was 9738%, 3736% and 94.73%, respectively. By visualizing the intermediate layer outputs, it has been shown that ESA filters learn the characteristics of the baby (edge, tissue, body, temperature) rather than background (incubator, measurement cables) when performing unhealthy-healthy classification. en_US
dc.description.sponsorship Istanbul Medipol Univ en_US
dc.identifier.isbn 978-1-7281-7206-4
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85100297526
dc.identifier.uri https://hdl.handle.net/20.500.13091/1069
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject classification en_US
dc.subject convolutional neural network en_US
dc.subject explainable artificial intelligence en_US
dc.subject neonate en_US
dc.title Explainable Features in Classification of Neonatal Thermograms en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
gdc.identifier.wos WOS:000653136100285
gdc.index.type WoS
gdc.index.type Scopus
gdc.scopus.citedcount 1
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 0
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Explainable_Features_in_Classification_of_Neonatal_Thermograms.pdf
Size:
794.72 KB
Format:
Adobe Portable Document Format