Classification of Medical Thermograms Belonging Neonates by Using Segmentation, Feature Engineering and Machine Learning Algorithms

dc.contributor.author Örnek, Ahmet Haydar
dc.contributor.author Ervural, Saim
dc.contributor.author Ceylan, Murat
dc.contributor.author Konak, Murat
dc.contributor.author Soylu, Hanifi
dc.contributor.author Savaşçı, Duygu
dc.date.accessioned 2021-12-13T10:34:38Z
dc.date.available 2021-12-13T10:34:38Z
dc.date.issued 2020
dc.description.abstract Monitoring and evaluating the skin temperature value are considerably important for neonates. A system detecting diseases without any harmful radiation in early stages could be developed thanks to thermography. This study is aimed at detecting healthy/unhealthy neonates in neonatal intensive care unit (NICU). We used 40 different thermograms belonging 20 healthy and 20 unhealthy neonates. Thermograms were exported to thermal maps, and subsequently, the thermal maps were converted to a segmented thermal map. Local binary pattern and fast correlation-based filter (FCBF) were applied to extract salient features from thermal maps and to select significant features, respectively. Finally, the obtained features are classified as healthy and unhealthy with decision tree, artificial neural networks (ANN), logistic regression, and random forest algorithms. The best result was obtained as 92.5% accuracy (100% sensitivity and 85% specificity). This study proposes fast and reliable intelligent system for the detection of healthy/unhealthy neonates in NICU. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [215E019] en_US
dc.description.sponsorship This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, project number: 215E019). en_US
dc.identifier.doi 10.18280/ts.370409
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85096507594
dc.identifier.uri https://doi.org/10.18280/ts.370409
dc.identifier.uri https://hdl.handle.net/20.500.13091/1068
dc.language.iso en en_US
dc.publisher INT INFORMATION & ENGINEERING TECHNOLOGY ASSOC en_US
dc.relation.ispartof TRAITEMENT DU SIGNAL en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject fast correlation-based filter en_US
dc.subject local binary pattern en_US
dc.subject machine learning en_US
dc.subject neonate en_US
dc.subject thermography en_US
dc.title Classification of Medical Thermograms Belonging Neonates by Using Segmentation, Feature Engineering and Machine Learning Algorithms en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Soylu, Hanifi/0000-0003-0367-859X
gdc.author.scopusid 57210593918
gdc.author.scopusid 57195215988
gdc.author.scopusid 56276648900
gdc.author.scopusid 6506559837
gdc.author.scopusid 7003480890
gdc.author.scopusid 56444416700
gdc.author.wosid Soylu, Hanifi/AAD-6846-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 617 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 611 en_US
gdc.description.volume 37 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3095116911
gdc.identifier.wos WOS:000583751500009
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.6340974E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Machine Learning
gdc.oaire.keywords Neonate
gdc.oaire.keywords Thermography
gdc.oaire.keywords Local Binary Pattern
gdc.oaire.keywords Fast Correlation-Based Filter
gdc.oaire.popularity 3.621739E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 2
gdc.openalex.collaboration National
gdc.openalex.fwci 0.37714568
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 3
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 5
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
37.04_09.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format