Comparison of Linear Discriminant Analysis, Support Vector Machines and Naive Bayes Methods in the Classification of Neonatal Hyperspectral Signatures

dc.contributor.author Cihan, Mücahit
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2021-12-13T10:24:06Z
dc.date.available 2021-12-13T10:24:06Z
dc.date.issued 2021
dc.description 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 -- 9 June 2021 through 11 June 2021 -- -- 170536 en_US
dc.description.abstract Hyperspectral imaging (HSI) is an imaging method that enables to obtain a large number of two-dimensional images in a wide wavelength range in the electromagnetic spectrum band. HSI has an important potential in biomedical applications as it provides diagnostic information about tissue physiology, morphology and composition. In this study, spectral signatures of unhealthy and healthy neonates were extracted using HSI method. Then, data statistics (minimum, maximum, mean, median and standard deviation) of these signatures were obtained and classified with Linear Discriminant Analysis, Support Vector Machines and Naive Bayes Methods. After the classification processes, the best result was achieved using Linear Discriminant Analysis with 90.63% accuracy, 87.50% sensitivity and 93.75% specificity. © 2021 IEEE. en_US
dc.identifier.doi 10.1109/SIU53274.2021.9477861
dc.identifier.isbn 9781665436496
dc.identifier.scopus 2-s2.0-85111451769
dc.identifier.uri https://doi.org/10.1109/SIU53274.2021.9477861
dc.identifier.uri https://hdl.handle.net/20.500.13091/371
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Classification en_US
dc.subject Hyperspectral imaging en_US
dc.subject Machine learning methods en_US
dc.subject Neonatal spectral signature en_US
dc.title Comparison of Linear Discriminant Analysis, Support Vector Machines and Naive Bayes Methods in the Classification of Neonatal Hyperspectral Signatures en_US
dc.title.alternative Yenido?an Hiperspektral İmzalarinin Siniflandirilmasinda Lineer Diskriminant Analizi, Destek Vektör Makineleri ve Naive Bayes Yöntemlerinin Karşilaştirilmasi en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57226111647
gdc.author.scopusid 56276648900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
gdc.identifier.openalex W3184937839
gdc.identifier.wos WOS:000808100700104
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.7569642E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.7968727E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0207 environmental engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.30117195
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 5
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 5
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Comparison_of_Linear_Discriminant_Analysis_Support_Vector_Machines_and_Naive_Bayes_Methods_in_the_Classification_of_Neonatal_Hyperspectral_Signatures.pdf
Size:
494.43 KB
Format:
Adobe Portable Document Format