Point Cloud Filtering on Uav Based Point Cloud

dc.contributor.author Zeybek, Mustafa
dc.contributor.author Şanlıoğlu, İsmail
dc.date.accessioned 2021-12-13T10:41:39Z
dc.date.available 2021-12-13T10:41:39Z
dc.date.issued 2019
dc.description.abstract Nowadays, Unmanned Aerial Vehicles (UAVs) have been attracted wide attentions such as a new measurement equipment and mapping, which are capable of the high-resolution point cloud data collection. In addition, a massive point cloud data has brought about the data filtering and irregular data organization for the generation of digital terrain models. Filtering of point clouds contains vegetations and artificial objects play a crucial role for bare earth terrain modelling. Topographical maps rely on the data structures which are built on bare ground terrain points. The bare earth surface extraction is not the only crucial to the topographical maps but also decision-making processes such as natural hazards management, deformation analysis and interpretation. In order to filter a UAV-based 3D raw point cloud data, in this paper, filtering performance of four different algorithms using open source and commercial software's have been investigated, (1) curvature based (Multiscale Curvature Classification-MCC), (2) surface-based filtering (FUSION), (3) progressive TIN based (LasTool-LasGround module-commercial) and (4) physical simulation processing (Cloth Simulation Filtering-CSF). The applied filtering results were validated with the reference data set classified by operator. Although different filtering methodologies implemented on point clouds, these methods demonstrated similar results to extract ground on distinctive terrain feature such as dense vegetated, flat surface, rough and complex landscapes. The filtering algorithms' results revealed that UAV-generated data suitable for extraction of bare earth surface feature on the different type of a terrain. Accuracy of the filtered point cloud reached the 93% true classification on flat surfaces from CSF filtering method. (C) 2018 Elsevier Ltd. All rights reserved. en_US
dc.description.sponsorship Selcuk University Scientific Research Projects Coordination Unit (BAP) [15401017, 2014-OYP-055] en_US
dc.description.sponsorship This paper is a part of Mustafa Zeybek's PhD thesis. This work was partly supported by the Selcuk University Scientific Research Projects Coordination Unit (BAP Grant No. 15401017 and 2014-OYP-055). en_US
dc.identifier.doi 10.1016/j.measurement.2018.10.013
dc.identifier.issn 0263-2241
dc.identifier.issn 1873-412X
dc.identifier.scopus 2-s2.0-85054426341
dc.identifier.uri https://doi.org/10.1016/j.measurement.2018.10.013
dc.identifier.uri https://hdl.handle.net/20.500.13091/1620
dc.language.iso en en_US
dc.publisher ELSEVIER SCI LTD en_US
dc.relation.ispartof MEASUREMENT en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Uav en_US
dc.subject Point Cloud en_US
dc.subject Filtering en_US
dc.subject Bare Earth en_US
dc.subject Extraction en_US
dc.subject From-Motion Photogrammetry en_US
dc.subject Airborne Lidar Data en_US
dc.subject Unmanned Aerial Vehicle en_US
dc.subject Digital Elevation Model en_US
dc.subject Morphological Filter en_US
dc.subject Accuracy en_US
dc.subject Algorithms en_US
dc.subject Generation en_US
dc.subject Environments en_US
dc.subject Performance en_US
dc.title Point Cloud Filtering on Uav Based Point Cloud en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Zeybek, Mustafa/0000-0001-8640-1443
gdc.author.scopusid 56004968900
gdc.author.scopusid 24588216000
gdc.author.wosid Zeybek, Mustafa/D-2556-2018
gdc.author.wosid sanlioglu, ismail/AAX-8957-2020
gdc.bip.impulseclass C3
gdc.bip.influenceclass C3
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümü en_US
gdc.description.endpage 111 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 99 en_US
gdc.description.volume 133 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2894669900
gdc.identifier.wos WOS:000449097800013
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 64.0
gdc.oaire.influence 1.1877718E-8
gdc.oaire.isgreen true
gdc.oaire.keywords Point cloud
gdc.oaire.keywords UAV
gdc.oaire.keywords Bare earth
gdc.oaire.keywords Extraction
gdc.oaire.keywords Filtering
gdc.oaire.popularity 9.147628E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 6.47805536
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 116
gdc.plumx.crossrefcites 129
gdc.plumx.facebookshareslikecount 41
gdc.plumx.mendeley 202
gdc.plumx.scopuscites 146
gdc.scopus.citedcount 144
gdc.wos.citedcount 123

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0263224118309357-main.pdf
Size:
4.5 MB
Format:
Adobe Portable Document Format