Meyve Sineği Optimizasyon Algoritmasının Performansını İyileştirmek için Yeni Yaklaşımlar

dc.contributor.advisor Gündüz, Mesut
dc.contributor.author İşcan, Hazım
dc.date.accessioned 2021-12-13T10:29:53Z
dc.date.available 2021-12-13T10:29:53Z
dc.date.issued 2019
dc.description.abstract Optimizasyon problemlerinin çözümü son yıllarda dikkat çeken bir konu haline gelmiştir. Bu problemlerin çözümü için birçok meta-sezgisel yöntem geliştirilmiştir. Meta-sezgisel yöntemler optimum çözümü garanti etmezler. Meta-sezgisel yöntemler ile makul zamanda kabul edilebilir çözümler bulmak amaçlanır. Meta-sezgisel yöntemler çoğunlukla probleme özel olmazlar. Meta-sezgisel yaklaşımlar genel amaçlıdır, esnektir ve problemlere uyarlanabilirler. Meta-sezgisel yöntemler bu özelliklerinden dolayı optimizasyon problemlerin çözümünde son yıllarda yoğun olarak kullanılmaktadır. Meyve Sineği Optimizasyon Algoritması (FOA) 2011 yılında sunulmuş bir meta-sezgisel algoritmadır. Meyve sineğinin yiyecek arama davranışından esinlenerek önerilmiştir. FOA basit yapılı, dizayn parametresi az, optimizasyon problemlerine kolay uyarlanabilir, anlaşılması ve programlanması kolay bir meta-sezgisel yaklaşımdır. Bu tür avantajları olmasına rağmen dezavantajları da mevcuttur. Lokal optimuma çabuk takılır. Karar fonksiyonu her zaman pozitiftir. Güncelleme stratejisi [-1, 1] aralığında olduğu için küçüktür. Bu çalışmada, FOA'nın dezavantajlarını gidermek, algoritmanın performansını iyileştirmek ve daha kaliteli sonuçlar üretmesini sağlamak hedeflenmiştir. Bu amaçla FOA'da üç farklı geliştirme yapılmıştır. İlk geliştirmede FOA'ya işaret parametreleri ilave edilmiş ve SFOA olarak adlandırılmıştır. İkincide, FOA'nın karar verme stratejisi iki aşamalı hale getirilmiş ve saFOA olarak adlandırılmıştır. Üçüncüde, FOA'nın arama esnasında en kötü çözümlerinde dikkate alındığı iki farklı versiyon geliştirilmiş ve pFOA_v1 ve pFOA_v2 olarak adlandırılmıştır. Yeni önerilen FOA sürümlerinin performansı iyi bilinen 21 sayısal kıyaslama fonksiyonunda test edilerek araştırılmıştır. Elde edilen deneysel sonuçlar, literatürde iyi bilinen meta-sezgisel algoritmalar ile kıyaslanmıştır. Deneysel sonuçlar, önerilen FOA sürümlerinin sürekli optimizasyon problemleri için karşılaştırılabilir, başarılı ve rekabetçi sonuçlar ürettiğini göstermektedir. en_US
dc.description.abstract The solution of optimization problems has become a subject of interest in recent years. Many meta-heuristic methods have been developed to solve these problems. Meta-heuristic methods do not guarantee an optimum solution. Meta-heuristic methods aim to find acceptable solutions in a reasonable time. Meta-heuristic methods are often not problem specific. Meta-heuristic approaches are general purpose, flexible and adaptable to problems. Meta-heuristic methods have been used extensively in the solution of optimization problems in recent years. Fruit Fly Optimization Algorithm (FOA) is a meta-heuristic algorithm introduced in 2011. Inspired by the fruit fly's foraging behavior. FOA is a simple structure, intuitive approach that is easy to understand and program, easy to adapt to optimization problems, with few design parameters. Although it has such advantages, it also has disadvantages. It has fast to the local optimum. The decision function is always positive. The update strategy is small because it is in the [-1, 1] range. In this study, it is aimed to eliminate the disadvantages of the FOA, to improve the performance of the algorithm and to provide better quality results. For this purpose, three different improves have been made in FOA. In the first development, sign parameters were added to the FOA and called SFOA. In the second, the decision-making strategy of the FOA was made in two stages and called saFOA. In the third, two different versions have been developed in which FOA is considered in the worst-case solutions during the search and is named pFOA_v1 and pFOA_v2. The performance of the newly proposed FOA versions was tested in 21 well-known numerical benchmark functions. The experimental results are compared with the meta-heuristic algorithms which are well known in the literature. Experimental results show that the proposed FOA versions produce comparable, successful and competitive results for continuous optimization problems. en_US
dc.identifier.uri https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=4J_FzTwlrMCH4qBROpXPH2RkI6FhrEpaXIV08dqfuC_8LhfAy4XaKYm4Lx7ExMgK
dc.identifier.uri https://hdl.handle.net/20.500.13091/735
dc.language.iso tr en_US
dc.publisher Konya Teknik Üniversitesi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol en_US
dc.subject Computer Engineering and Computer Science and Control en_US
dc.subject Meta-sezgisel en_US
dc.subject meyve sineği optimizasyon algoritması en_US
dc.subject sezgisel algoritmalar en_US
dc.subject sürekli optimizasyon en_US
dc.subject sürü zekâs en_US
dc.subject Continuous optimization en_US
dc.subject fruit fly optimization algorithm en_US
dc.subject heuristic algorithms en_US
dc.subject Metaheuristic en_US
dc.subject swarm intelligence en_US
dc.title Meyve Sineği Optimizasyon Algoritmasının Performansını İyileştirmek için Yeni Yaklaşımlar en_US
dc.title.alternative Novel Approaches for Performance Improvement of Fruit Fly Optimization Algorithm en_US
dc.type Doctoral Thesis en_US
dspace.entity.type Publication
gdc.author.institutional İşcan, Hazim
gdc.coar.access open access
gdc.coar.type text::thesis::doctoral thesis
gdc.description.department Enstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı en_US
gdc.description.endpage 87 en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1 en_US
gdc.description.wosquality N/A
gdc.identifier.yoktezid 613699 en_US
gdc.virtual.author İşcan, Hazim
gdc.virtual.author Gündüz, Mesut
relation.isAuthorOfPublication 7e56b40a-ad39-4caf-b255-2bccb3c91a6e
relation.isAuthorOfPublication 87ad5864-9916-41e0-ba4c-e024d7df88c5
relation.isAuthorOfPublication.latestForDiscovery 7e56b40a-ad39-4caf-b255-2bccb3c91a6e
relation.isOrgUnitOfPublication bd9476e6-00a8-43fd-8d87-2910fe32b3b6
relation.isOrgUnitOfPublication 628112b8-e43d-4755-bea0-76c87435c7fd
relation.isOrgUnitOfPublication 38239134-2638-4e9e-8ec2-877d1e166988
relation.isOrgUnitOfPublication.latestForDiscovery bd9476e6-00a8-43fd-8d87-2910fe32b3b6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
613699.pdf
Size:
7.38 MB
Format:
Adobe Portable Document Format