Weight Optimization of Hybrid Composite Laminate Using Learning-Oriented Artificial Algae Algorithm

dc.contributor.author Yibre, Abdulkerim Mohammed
dc.contributor.author Koçer, Barış
dc.contributor.author Esleman, Esmael Adem
dc.contributor.author Önal, Gürol
dc.date.accessioned 2021-12-13T10:41:30Z
dc.date.available 2021-12-13T10:41:30Z
dc.date.issued 2020
dc.description.abstract The optimal design of parameters is vital for the effective use of hybrid composite laminated structures. This is due to a highly dependent property of laminated composite structures strength on its fiber orientation, stacking sequence and the number of ply in each laminate. The main aim of this study is to apply Learning-Oriented Artificial Algae Algorithm for optimization of the weight of rectangular hybrid composite laminated plate subjected to compressive in-plane loading. The design parameters are number of plies and stacking sequence of the laminate. The critical buckling factor is the constraint of the optimization process. The parameters of the hybrid composite plate are optimized using Learning-Oriented Artificial Algae Algorithm with the aim of minimizing weight.The performance of the algorithm was compared with previous studies that employed the GA and ACO algorithms. The Learning-Oriented method is integrated to reduce the number of functions evaluated and in turn reducing computational cost. The results showed that Learning-Oriented Artificial Algae Algorithm outperformed GA and ACO, and hence can be successfully applied in the optimization of laminated composite structures. en_US
dc.identifier.doi 10.1007/s42452-020-3126-0
dc.identifier.issn 2523-3963
dc.identifier.issn 2523-3971
dc.identifier.scopus 2-s2.0-85100776776
dc.identifier.uri https://doi.org/10.1007/s42452-020-3126-0
dc.identifier.uri https://hdl.handle.net/20.500.13091/1543
dc.language.iso en en_US
dc.publisher SPRINGER INTERNATIONAL PUBLISHING AG en_US
dc.relation.ispartof SN APPLIED SCIENCES en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Algae Algorithm en_US
dc.subject Buckling Load en_US
dc.subject Hybrid Composite Laminate en_US
dc.subject Weight Optimization en_US
dc.subject Stacking Sequence en_US
dc.subject Design Optimization en_US
dc.subject Buckling Optimization en_US
dc.subject Stacking-Sequence en_US
dc.subject Genetic Algorithm en_US
dc.subject Plates en_US
dc.subject Load en_US
dc.title Weight Optimization of Hybrid Composite Laminate Using Learning-Oriented Artificial Algae Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Esleman, Esmael Adem/0000-0003-0769-2487
gdc.author.scopusid 57210369920
gdc.author.scopusid 35786168500
gdc.author.scopusid 57221946043
gdc.author.scopusid 8605606500
gdc.author.wosid Esleman, Esmael Adem/AAP-7912-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.volume 2 en_US
gdc.identifier.openalex W3038133507
gdc.identifier.wos WOS:000548338400002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.616149E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.3507162E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0210 nano-technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.07
gdc.opencitations.count 4
gdc.plumx.mendeley 23
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.virtual.author Önal, Gürol
gdc.wos.citedcount 3
relation.isAuthorOfPublication decc0959-5399-4454-89e0-875be2c1d909
relation.isAuthorOfPublication.latestForDiscovery decc0959-5399-4454-89e0-875be2c1d909

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yibre2020_Article_WeightOptimizationOfHybridComp.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format