An Extensive Study for Binary Characterisation of Adrenal Tumours

dc.contributor.author Koyuncu, Hasan
dc.contributor.author Ceylan, Rahime
dc.contributor.author Asoğlu, Semih
dc.contributor.author Cebeci, Hakan
dc.contributor.author Koplay, Mustafa
dc.date.accessioned 2021-12-13T10:32:11Z
dc.date.available 2021-12-13T10:32:11Z
dc.date.issued 2019
dc.description.abstract On adrenal glands, benign tumours generally change the hormone equilibrium, and malign tumours usually tend to spread to the nearby tissues and to the organs of the immune system. These features can give a trace about the type of adrenal tumours; however, they cannot be observed all the time. Different tumour types can be confused in terms of having a similar shape, size and intensity features on scans. To support the evaluation process, biopsy process is applied that includes injury and complication risks. In this study, we handle the binary characterisation of adrenal tumours by using dynamic computed tomography images. Concerning this, the usage of one more imaging modalities and biopsy process is wanted to be excluded. The used dataset consists of 8 subtypes of adrenal tumours, and it seemed as the worst-case scenario in which all handicaps are available against tumour classification. Histogram, grey level co-occurrence matrix and wavelet-based features are investigated to reveal the most effective one on the identification of adrenal tumours. Binary classification is proposed utilising four-promising algorithms that have proven oneself on the task of binary-medical pattern classification. For this purpose, optimised neural networks are examined using six dataset inspired by the aforementioned features, and an efficient framework is offered before the use of a biopsy. Accuracy, sensitivity, specificity, and AUC are used to evaluate the performance of classifiers. Consequently, malign/benign characterisation is performed by proposed framework, with success rates of 80.7%, 75%, 82.22% and 78.61% for the metrics, respectively. en_US
dc.description.sponsorship Coordinatorship of Konya Technical University's Scientific Research Projects en_US
dc.description.sponsorship This work is supported by the Coordinatorship of Konya Technical University's Scientific Research Projects. en_US
dc.identifier.doi 10.1007/s11517-018-1923-z
dc.identifier.issn 0140-0118
dc.identifier.issn 1741-0444
dc.identifier.scopus 2-s2.0-85056658354
dc.identifier.uri https://doi.org/10.1007/s11517-018-1923-z
dc.identifier.uri https://hdl.handle.net/20.500.13091/938
dc.language.iso en en_US
dc.publisher SPRINGER HEIDELBERG en_US
dc.relation.ispartof MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Adrenal Tumours en_US
dc.subject Computed Tomography en_US
dc.subject Hybrid Classifier en_US
dc.subject Optimisation en_US
dc.subject Tumour Classification en_US
dc.subject Feature-Extraction en_US
dc.subject Classification en_US
dc.subject Diagnosis en_US
dc.subject Mri en_US
dc.title An Extensive Study for Binary Characterisation of Adrenal Tumours en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koyuncu, Hasan/0000-0003-4541-8833
gdc.author.scopusid 55884277600
gdc.author.scopusid 12244684600
gdc.author.scopusid 57203019010
gdc.author.scopusid 56033553000
gdc.author.scopusid 55920818900
gdc.author.wosid Koyuncu, Hasan/C-2203-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 862 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 849 en_US
gdc.description.volume 57 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2901122815
gdc.identifier.pmid 30430422
gdc.identifier.wos WOS:000463717500008
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 3.0363254E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Databases as Topic
gdc.oaire.keywords ROC Curve
gdc.oaire.keywords Adrenal Gland Neoplasms
gdc.oaire.keywords Algorithms
gdc.oaire.popularity 7.4188793E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.10088463
gdc.openalex.normalizedpercentile 0.75
gdc.opencitations.count 9
gdc.plumx.crossrefcites 7
gdc.plumx.mendeley 23
gdc.plumx.pubmedcites 4
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.virtual.author Ceylan, Rahime
gdc.virtual.author Koyuncu, Hasan
gdc.wos.citedcount 11
relation.isAuthorOfPublication db1f6849-0679-4c3f-8bb5-fcfb40beb531
relation.isAuthorOfPublication cb007ba5-2c13-4205-a2bf-53ae58be8fce
relation.isAuthorOfPublication.latestForDiscovery db1f6849-0679-4c3f-8bb5-fcfb40beb531

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s11517-018-1923-z.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format