Performance Comparison of Extreme Learning Machines and Other Machine Learning Methods on Wbcd Data Set

dc.contributor.author Keskin, O.S.
dc.contributor.author Durdu, A.
dc.contributor.author Aslan, M.F.
dc.contributor.author Yusefi, A.
dc.date.accessioned 2021-12-13T10:32:04Z
dc.date.available 2021-12-13T10:32:04Z
dc.date.issued 2021
dc.description 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 -- 9 June 2021 through 11 June 2021 -- -- 170536 en_US
dc.description.abstract Breast cancer is one of the most common forms of cancer among women in our country and the world. Artificial intelligence studies are growing in order to reduce the mortality and early diagnosis needed for appropriate treatment. The Excessive Learning Machines (ELM) method, one of the machine learning approaches, is applied to the Wisconsin Breast Cancer Diagnostic (WBCD) dataset in this study, and the findings are compared to those of other machine learning methods. For this purpose, the same dataset is also classified using Multi-Layer Perceptron (MLP), Sequential Minimum Optimization (SMO), Decision Tree Learning (J48), Naive Bayes (NB), and K-Nearest Neighbor (KNN) methods. According to the results of the study, the ELM approach is more successful than other approaches on the WBCD dataset. It's also worth noting that as the number of neurons in the ELM grows, so does the learning ability of the network. However, after a certain number of neurons have passed, test performance begins to decline sharply. Finally, the ELM's performance is compared to the results of other studies in the literature. © 2021 IEEE. en_US
dc.identifier.doi 10.1109/SIU53274.2021.9477984
dc.identifier.isbn 9781665436496
dc.identifier.scopus 2-s2.0-85111444406
dc.identifier.uri https://doi.org/10.1109/SIU53274.2021.9477984
dc.identifier.uri https://hdl.handle.net/20.500.13091/846
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Breast cancer en_US
dc.subject Classification en_US
dc.subject Extreme learning machines en_US
dc.subject Machine learning en_US
dc.title Performance Comparison of Extreme Learning Machines and Other Machine Learning Methods on Wbcd Data Set en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57226403111
gdc.author.scopusid 55364612200
gdc.author.scopusid 57205362915
gdc.author.scopusid 57221601191
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W3185179407
gdc.identifier.wos WOS:000808100700225
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.8858242E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.5789457E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.84662145
gdc.openalex.normalizedpercentile 0.79
gdc.opencitations.count 6
gdc.plumx.mendeley 12
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 0
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Performance_comparison_of_Extreme_Learning_Machines_and_other_machine_learning_methods_on_WBCD_data_set.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format