Generalization Capacity Analysis of Non-Intrusive Load Monitoring Using Deep Learning

dc.contributor.author Çimen, Halil
dc.contributor.author Palacios-Garcia, Emilio J.
dc.contributor.author Çetinkaya, Nurettin
dc.contributor.author Kolbak, Morten
dc.contributor.author Sciume, Giuseppe
dc.contributor.author Vasquez, Juan C.
dc.contributor.author Guerrero, Josep M.
dc.date.accessioned 2022-05-23T20:22:43Z
dc.date.available 2022-05-23T20:22:43Z
dc.date.issued 2020
dc.description 20th IEEE Mediterranean Eletrotechnical Conference (IEEE MELECON) -- JUN 15-18, 2020 -- ELECTR NETWORK en_US
dc.description.abstract Appliance Load Monitoring is a technique used to monitor devices existing in homes, industry or naval vessels. Acquisition of device-level data can provide great benefits in many areas such as energy management, demand response, and load forecasting. However, the monitoring process is often provided with a costly installation, as it requires a large number of sensors and a data center. Non-Intrusive Load Monitoring (NILM) is an alternative and cost-efficient load monitoring solution. Simply put, NILM is the process of obtaining device-level data by analyzing the aggregated data read from the main meter that measures the electricity consumption of the whole house. Before NILM analysis is performed, the load patterns of the appliances are usually modeled individually. In general, one model for each appliance is modeled even if the appliance has more than one operating program such as washing machine and oven. Therefore, when the appliance operates in other programs, the accuracy of NILM analysis decreases. In this paper, an appliance-based NILM analysis has been made considering the appliances having multiple operating programs. In order to increase the accuracy of NILM analysis, several deep learning methods, which are the most important data-driven technique of recent times, are used. Developed models were tested in IoT Microgrid Laboratory environment. en_US
dc.description.sponsorship IEEE, IEEE Reg 8, IEEE Italy Sect, Univ Palermo, IEEE Ind Applicat Soc, ABB, IEEE Entrepreneurship, MDPI, Sensors Journal en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) International Doctoral Research Fellowship Programme [BIDEB-2214] en_US
dc.description.sponsorship This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2214 International Doctoral Research Fellowship Programme. en_US
dc.identifier.doi 10.1109/MELECON48756.2020.9140688
dc.identifier.isbn 978-1-7281-5200-4
dc.identifier.issn 2158-8481
dc.identifier.scopus 2-s2.0-85089275174
dc.identifier.uri https://hdl.handle.net/20.500.13091/2429
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof 20th Ieee Mediterranean Eletrotechnical Conference (Ieee Melecon 2020) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject load monitoring en_US
dc.subject deep learning en_US
dc.subject energy disaggregation en_US
dc.subject demand response en_US
dc.subject energy management en_US
dc.title Generalization Capacity Analysis of Non-Intrusive Load Monitoring Using Deep Learning en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Palacios-Garcia, Emilio Jose/0000-0003-2703-6532
gdc.author.id Kolbaek, Morten/0000-0002-2561-4960
gdc.author.id Guerrero, Josep/0000-0001-5236-4592
gdc.author.id Vasquez, Juan C./0000-0001-6332-385X
gdc.author.id , Giuseppe/0000-0002-2384-5706
gdc.author.wosid Palacios-Garcia, Emilio Jose/K-9567-2015
gdc.author.wosid Guerrero, Josep/D-5519-2014
gdc.author.wosid Vasquez, Juan C./J-2247-2014
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 220 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 216 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3043595962
gdc.identifier.wos WOS:000783754700040
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6616698E-9
gdc.oaire.isgreen false
gdc.oaire.keywords energy management
gdc.oaire.keywords demand response
gdc.oaire.keywords energy disaggregation
gdc.oaire.keywords deep learning
gdc.oaire.keywords Deep learning
gdc.oaire.keywords load monitoring
gdc.oaire.popularity 1.4330963E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.19640875
gdc.openalex.normalizedpercentile 0.51
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 18
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Çetinkaya, Nurettin
gdc.virtual.author Çimen, Halil
gdc.wos.citedcount 1
relation.isAuthorOfPublication fa2ce062-2c2c-4404-92f7-9e50092bf335
relation.isAuthorOfPublication d6f62538-2dd4-40ea-b407-99a0c3c045d1
relation.isAuthorOfPublication.latestForDiscovery fa2ce062-2c2c-4404-92f7-9e50092bf335

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Generalization_Capacity_Analysis_of_Non-_Intrusive_Load_Monitoring_using_Deep_Learning.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format