Gaussian Regression Models for Day-Level Forecasting of Covid-19 in European Countries

dc.contributor.author Özkaya, Umut
dc.contributor.author Öztürk, Şaban
dc.date.accessioned 2021-12-13T10:34:43Z
dc.date.available 2021-12-13T10:34:43Z
dc.date.issued 2022
dc.description.abstract Coronavirus (COVID-19) outbreak has reached a global disease and has begun to threaten all over the world. No vaccine or drug has been developed to treat the outbreak, still. According to the data of the World Health Organization (WHO), the COVID-19 virus can be easily transmitted through respiratory droplets and contact routes. States need to take necessary measures to control the outbreak. In this study, pandemic data for eight countries in the European region are analyzed between 22 January 2020 and 30 April 2020. These countries are Belgium, Netherlands, Germany, UK, Spain, France, Italy, and Turkey. The number of cases is taken into consideration in the selection of countries. Gaussian regression analysis is preferred for the COVID-19 outbreak analysis. A comparative analysis is performed using Ard-Exponential kernel function, Rational-Quadratic kernel function, and Squared Exponential kernel functions. The quasi-Newton algorithm is used to optimize regression models. Confirmed death and recovered case data are processed in the scope of the analysis. The first 90 days of the data are used for the training of Gaussian regression models. The last nine days are evaluated for prediction. Mean Absolute Error (MAE), Median Error (ME), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) error metrics are used for metric of performance. In general, it is seen that the Ard-Exponential kernel with Gaussian Regression (AEGR) method obtained high metric performances for all cases and countries. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. en_US
dc.identifier.doi 10.1007/978-3-030-74761-9_15
dc.identifier.issn 1860949X
dc.identifier.scopus 2-s2.0-85111929075
dc.identifier.uri https://doi.org/10.1007/978-3-030-74761-9_15
dc.identifier.uri https://hdl.handle.net/20.500.13091/1129
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Studies in Computational Intelligence en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Coronavirus en_US
dc.subject COVID-19 en_US
dc.subject Gaussian regression en_US
dc.subject Optimization en_US
dc.subject Prediction en_US
dc.subject Quasi-Newton en_US
dc.title Gaussian Regression Models for Day-Level Forecasting of Covid-19 in European Countries en_US
dc.type Book Part en_US
dspace.entity.type Publication
gdc.author.scopusid 57191610477
gdc.author.scopusid 57191953654
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::book::book part
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 356 en_US
gdc.description.publicationcategory Kitap Bölümü - Uluslararası en_US
gdc.description.scopusquality Q3
gdc.description.startpage 339 en_US
gdc.description.volume 963 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3183327498
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.8479246E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.4820237E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 2.77927157
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 4
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Özkaya, Umut
relation.isAuthorOfPublication 04ccc400-06d6-4438-9f17-97fdca915bf4
relation.isAuthorOfPublication.latestForDiscovery 04ccc400-06d6-4438-9f17-97fdca915bf4

Files