PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collections
Permanent URI for this collectionhttps://hdl.handle.net/20.500.13091/5
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collections by Journal "Acs Omega"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Carbon Nanotube-Supported Bimetallic Core-Shell (m@pd/Cnt (m: Zn, Mn, Ag, Co, V, Ni)) Cathode Catalysts for H2o2 Fuel Cells(AMER CHEMICAL SOC, 2023) Yapıcı, Burak; Gökdoğan Şahin, ÖzlemM@Pd/CNT (M: Zn, Mn, Ag, Co, V, Ni) core-shell and Pd/CNT nanoparticles were prepared by sodium borohydride reduction and explored as cathode catalysts for the hydrogen peroxide reduction reaction. Electrochemical and physical characterization techniques are applied to explore the characteristics of the produced electrocatalysts. The cyclic voltammetry (CV) experiments show that Zn@Pd/CNT-modified electrodes have a current density of 273.2 mA cm(-2), which is 3.95 times higher than that of Pd/CNT. According to the chronoamperometric curves, Zn@Pd/CNT has the highest steady-state current density for the H2O2 electro-reduction process among the synthesized electrocatalysts. Moreover, electrochemical impedance spectroscopy (EIS) spectra confirmed the previous electrochemical results due to the lowest charge transfer resistance (35 Omega) with respect to other electrocatalysts.Article Citation - WoS: 18Citation - Scopus: 19Development of Highly Luminescent Water-Insoluble Carbon Dots by Using Calix[4]pyrrole as the Carbon Precursor and Their Potential Application in Organic Solar Cells(Amer Chemical Soc, 2022) Coşkun, Yağız; Ünlü, Fatma Yelda; Yılmaz, Tuğbahan; Türker, Yurdanur; Aydoğan, Abdullah; Kuş, Mahmut; Ünlü, CanerCarbon dots (CDs) are carbon-based fluorescent nanomaterials that are of interest in different research areas due to their low cost production and low toxicity. Considering their unique photophysical properties, hydrophobic/amphiphilic CDs are powerful alternatives to metal-based quantum dots in LED and photovoltaic cell designs. On the other hand, CDs possess a considerably high amount of surface defects that give rise to two significant drawbacks: (1) causing decrease in quantum yield (QY), a crucial drawback that limits their utilization in LEDs, and (2) affecting the efficiency of charge transfer, a significant factor that limits the use of CDs in photovoltaic cells. In this study, we synthesized highly luminescent, water-insoluble, slightly amphiphilic CDs by using a macrocyclic compound, calix[4]pyrrole, for the first time in the literature. Calix[4]pyrrole-derived CDs (CP-DOTs) were highly luminescent with a QY of over 60% and size of around 4-10 nm with graphitic structure. The high quantum yield of CP-DOTs indicated that they had less amount of surface defects. Furthermore, CP-DOTs were used as an additive in the active layer of organic solar cells (OSC). The photovoltaic parameters of OSCs improved upon addition of CDs. Our results indicated that calix[4]pyrrole is an excellent carbon precursor to synthesize highly luminescent and water-insoluble carbon dots, and CDs derived from calix[4]pyrrole are excellent candidates to improve optoelectronic devices.Article Citation - WoS: 20Citation - Scopus: 19Electrical and Photodetector Characteristics of Schottky Structures Interlaid With P(eha) and P(eha-Co Functional Polymers by the Icvd Method(Amer Chemical Soc, 2023) Demirezen, Selcuk; Ulusoy, Murat; Durmuş, Haziret; Çavuşoğlu, Halit; Yılmaz, Kurtuluş; Altındal, ŞemsettinIn this study, poly(2-ethylhexyl acrylate) (PEHA) homopolymer and its copolymer combined with acrylic acid P(EHA-co-AA) were employed as interfaces in two separate Schottky structures. First, both interfaces were grown by initiated chemical vapor deposition (iCVD), which provides much better deposition control and homogeneous coating compared to solution-phase methods. In addition to this advantageous method, the effects of two different polymers, one of which is better able to adhere to the crystal surface on which it is formed than the other, on the optoelectronic properties have been studied. Then, their current-voltage (I-V) and capacitance/conductance-voltage (C/(G/omega)-V) characteristics were investigated both in the dark and under illumination. The basic electrical parameters and the illumination-induced profile of the surface state (N-ss) were probed by I-V and C-V measurements for two samples. A decrease in the barrier height (BH) and, consequently, a significant increase in the photocurrent were observed under illumination. Striking changes in series resistance (R-s) values are also highlighted. The photocapacitance and conductance characteristics indicated that the structures could be considered not only as photodiodes but also as photocapacitors. Moreover, the voltage-dependent changes of some photodetector parameters, such as responsivity (R), sensitivity (S), and specific detectivity (D*), along with the transient photocurrent characteristics, are discussed for both structures. Therefore, we can say that the strong changes in these parameters, which figure the merit of photodiode and photodetector applications, depending on the voltage and under illumination, prove that it is a study carried out in accordance with the purpose and so they can be used in electronic and optoelectronic applications.Article Citation - WoS: 5Citation - Scopus: 4Environmentally Friendly and All-Dry Hydrophobic Patterning of Graphene Oxide for Fog Harvesting(Amer Chemical Soc, 2024) Yılmaz, Kurtuluş; Gürsoy, Mehmet; Karaman, MustafaThis study examines the fog-harvesting ability of graphene oxide surfaces patterned by hydrophobic domains. The samples were prepared from graphene deposited using low pressure chemical vapor deposition, which was later plasma oxidized to obtain hydrophilic graphene oxide (GO) surfaces. Hydrophobic domains on GO surfaces were formed by initiated CVD (iCVD) of a low-surface-energy poly(perfluorodecyl alkylate) (PPFDA) polymer. Hence, patterned surfaces with hydrophobic/hydrophilic contrast were produced with ease in an all-dry manner. The structures of the as-deposited graphene and PPFDA films were characterized using Raman and Fourier transform infrared spectrophotometer analyses, respectively. The fog harvesting performance of the samples was measured using the fog generated by a nebulizer, in which the average diameter of the fog droplets is comparable to meteorological fog. According to the fog harvesting experiment results, 100 cm2 of the as-patterned surface can collect fog up to 2.5 L in 10 h in a foggy environment. Hence, hydrophilic/hydrophobic patterned surfaces in this study can be considered as promising fog harvesting materials. Both CVD techniques used in the production of hydrophilic/hydrophobic patterned surfaces can be easily applied to the production of large-scale materials.Article Citation - WoS: 9Citation - Scopus: 9Reactive Extraction of Betaine From Sugarbeet Processing Byproducts(Amer Chemical Soc, 2023) Altinisik, Sinem; Zeidan, Hani; Yilmaz, M. Deniz; Marti, Mustafa E.Betaine from natural sources is still preferred over its synthetic analogue in secondary industries. It is currently obtained by expensive separation means, which is one of the main reasons for its high cost. In this study, reactive extraction of betaine from sugarbeet industry byproducts, that is, molasses and vinasse, was investigated. Dinonylnaphthalenedisulfonic acid (DNNDSA) was used as the extraction agent, and the initial concentration of betaine in the aqueous solutions of byproducts was adjusted to 0.1 M. Although maximum efficiencies were obtained at unadjusted pH values (pH 6, 5, and 6 for aqueous betaine, molasses, and vinasse solutions, respectively), the effect of aqueous pH on betaine extraction was negligible in the range of 2-12. The possible reaction mechanisms between betaine and DNNDSA under acidic, neutral, and basic conditions were discussed. Increasing the extractant concentration significantly increased (especially in the range of 0.1-0.4 M) the yields, and temperature positively (but slightly) affected betaine extraction. The highest extraction efficiencies (similar to 71.5, 71, and 67.5% in a single step for aqueous betaine, vinasse, and molasses solutions, respectively) were obtained with toluene as an organic phase solvent, and it was followed by dimethyl phthalate, 1-octanol, or methyl isobutyl ketone, indicating that the efficiency increased with decreasing polarity. Recoveries from pure betaine solutions were higher (especially at higher pH values and [DNNDSA] < 0.5 M) than those from vinasse and molasses solutions, indicating the adverse influence of byproduct constituents; however, the lower yields were not due to sucrose. Stripping was affected by the type of organic phase solvent, and a significant amount (66-91% in single step) of betaine in the organic phase was transferred to the second aqueous phase using NaOH as the stripping agent. Reactive extraction has a great potential for use in betaine recovery due to its high efficiency, simplicity, low energy demand, and cost.Article Citation - WoS: 13Citation - Scopus: 15Shear Performance in Reinforced Concrete Beams With Partial Aggregate Substitution Using Waste Glass: a Comparative Analysis Via Digital Imaging Processing and a Theoretical Approach(AMER CHEMICAL SOC, 2024) Zeybek, Özer; Basaran, Bogachan; Aksoylu, Ceyhun; Karalar, Memduh; Althaqafi, Essam; Beskopylny, Alexey N.; Stel'makh, Sergey A.The usage of waste glass aggregate (WGA) associated with the replacement of fine aggregate (FA) and coarse aggregate (CA) is observed to reduce the number of raw materials for sustainable concrete. For this aim, a total of 15 beams were produced, and then investigational experiments were implemented to observe the shear performances. The stirrup spacing and WGA proportion were chosen as the main parameters. FA and CA were exchanged with WGA with weight proportions of 0, 10, and 20%. The experimental investigation results showed that changing stirrup spacing and WGA proportion affected the fracture and shear properties of reinforced-concrete-beams (R-C-Bs). Furthermore, the findings of the test results revealed that the proportion of WGA could be efficiently consumed as 20% of the partial replacement of FA. With the addition of FA to the mixture, the load carrying capacity of R-C-Bs increases. On the other hand, increasing the WGA ratio by more than 10% using CA, together with increasing the stirrup spacing, can significantly reduce the capacity of R-C-Bs. It was observed that the calculated shear strengths of R-C-Bs with inadequate stirrup spacing, based on ACI 318 and EC2 design codes, can be up to 52 and 79% higher than the experimental results for R-C-Bs containing coarse glass aggregate and 21 and 56% higher for R-C-Bs containing fine glass aggregate, respectively. Additionally, an image processing method was applied to describe the damages/microdamages in R-C-Bs. At that point, the findings obtained from the experimental part of the study were confirmed by the results of the image processing method. Although the strains obtained with the image processing method are reliable, it has not been determined exactly where the crack will occur due to the very sudden development of the shear crack at the moment of beam failure.

