Environmentally Friendly and All-Dry Hydrophobic Patterning of Graphene Oxide for Fog Harvesting

No Thumbnail Available

Date

2024

Authors

Gürsoy, Mehmet
Karaman, Mustafa

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Chemical Soc

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

This study examines the fog-harvesting ability of graphene oxide surfaces patterned by hydrophobic domains. The samples were prepared from graphene deposited using low pressure chemical vapor deposition, which was later plasma oxidized to obtain hydrophilic graphene oxide (GO) surfaces. Hydrophobic domains on GO surfaces were formed by initiated CVD (iCVD) of a low-surface-energy poly(perfluorodecyl alkylate) (PPFDA) polymer. Hence, patterned surfaces with hydrophobic/hydrophilic contrast were produced with ease in an all-dry manner. The structures of the as-deposited graphene and PPFDA films were characterized using Raman and Fourier transform infrared spectrophotometer analyses, respectively. The fog harvesting performance of the samples was measured using the fog generated by a nebulizer, in which the average diameter of the fog droplets is comparable to meteorological fog. According to the fog harvesting experiment results, 100 cm2 of the as-patterned surface can collect fog up to 2.5 L in 10 h in a foggy environment. Hence, hydrophilic/hydrophobic patterned surfaces in this study can be considered as promising fog harvesting materials. Both CVD techniques used in the production of hydrophilic/hydrophobic patterned surfaces can be easily applied to the production of large-scale materials.

Description

Keywords

Surface Modification, Vapor-Deposition, Water, Wettability, Collection, Efficiency, Capture, Chemistry, QD1-999

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
3

Source

Acs Omega

Volume

9

Issue

8

Start Page

8810

End Page

8817
PlumX Metrics
Citations

Scopus : 4

PubMed : 2

Captures

Mendeley Readers : 21

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.50019688

Sustainable Development Goals

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo