01. Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed
Permanent URI for this communityhttps://hdl.handle.net/20.500.13091/1
Browse
Browsing 01. Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed by Department "Enstitüler, Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 9Ağaç-tohum Algoritmasının Cuda Destekli Grafik İşlem Birimi Üzerinde Paralel Uygulaması(2018) Çınar, Ahmet Cevahir; Kıran, Mustafa ServetSon yıllarda toplanan verinin artmasıyla birlikte verimli hesaplama yöntemlerinin de geliştirilmesi ihtiyacı artmaktadır. Çoğunlukla gerçek dünya problemlerinin zor olması sebebiyle optimal çözümü garanti etmese dahi makul zamanda yakın optimal çözümü garanti edebilen sürü zekâsı veya evrimsel hesaplama yöntemlerine olan ilgi de artmaktadır. Diğer bir açıdan seri hesaplama yöntemlerinde verinin veya işlemin paralelleştirilebileceği durumlarda paralel algoritmaların da geliştirilmesi ihtiyacı ortaya çıkmıştır. Bu çalışmada literatüre son yıllarda kazandırılmış olan popülasyon tabanlı ağaç-tohum algoritması ele alınmış ve CUDA platformu içerisinde paralel versiyonu geliştirilmiştir. Algoritmanın paralel versiyonunun performansı kıyas fonksiyonları üzerinde analiz edilmiş ve seri versiyonunun performansı ile karşılaştırılmıştır. Kıyas fonksiyonlarında problem boyutluluğu 10 olarak alınmış ve farklı popülasyon ve blok sayıları altında performans analizi yapılmıştır. Deneysel çalışmalar algoritmanın paralel versiyonunun algoritmanın seri sürümüne göre bazı problemler için 184,65 kata performans artışı sağladığı görülmüştür.Article Citation - WoS: 3Application of Abm To Spectral Features for Emotion Recognition(MEHRAN UNIV ENGINEERING & TECHNOLOGY, 2018) Demircan, Semiye; Örnek, Humar KahramanlıER (Emotion Recognition) from speech signals has been among the attractive subjects lately. As known feature extraction and feature selection are most important process steps in ER from speech signals. The aim of present study is to select the most relevant spectral feature subset. The proposed method is based on feature selection with optimization algorithm among the features obtained from speech signals. Firstly, MFCC (Mel-Frequency Cepstrum Coefficients) were extracted from the EmoDB. Several statistical values as maximum, minimum, mean, standard deviation, skewness, kurtosis and median were obtained from MFCC. The next process of study was feature selection which was performed in two stages: In the first stage ABM (Agent-Based Modelling) that is hardly applied to this area was applied to actual features. In the second stageOpt-aiNET optimization algorithm was applied in order to choose the agent group giving the best classification success. The last process of the study is classification. ANN (Artificial Neural Network) and 10 cross-validations were used for classification and evaluation. A narrow comprehension with three emotions was performed in the application. As a result, it was seen that the classification accuracy was rising after applying proposed method. The method was shown promising performance with spectral features.Article Nsga-Ii Algorithm for the Reallocation Problem in Land Consolidation(2020) Ortaçay, Zeynep; Uğuz, Harun; Haklı, HüseyinTo solve problems encountered in real life, we sometimes need optimization algorithms. Some of these problems have single objective, while others have multiple objectives. If there is a single objective, the problem is defined as a single-objective optimization problem and if there are more than one objective it is called multi-objective optimization problem. Today, lands are fragmented and scattered. This makes agriculture difficult and costly. To prevent these problems, Land Consolidation (LC) studies are being carried out. The reallocation stage, which is part of LC, can be defined as a multi objective optimization problem. In this study, one of the multi objective optimization techniques, NSGA-II algorithm, is applied to the reallocation problem. The results are comparable with the studies in the literature.

