Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Koyuncu, S."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 40
    Citation - Scopus: 46
    Evaluation of Occurrence, Fate and Removal of Priority Phthalate Esters (paes) in Wastewater and Sewage Sludge by Advanced Biological Treatment, Waste Stabilization Pond and Constructed Wetland
    (Pergamon-Elsevier Science Ltd, 2022) Nas, Bilgehan; Ateş, Havva; Dolu, Taylan; Yel, Esra; Argun, M. E.; Koyuncu, S.; Dinç, S.
    Phthalate Esters (PAEs), detected in high concentrations generally in treated wastewater discharged from wastewater treatment plants (WWTPs), are important pollutants that restrict the reuse of wastewater. Investigating the fate of these endocrine-disrupting chemicals in WWTPs is crucial in order to protect both receiving environments and ecosystems. For this purpose, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP) and benzyl butyl phthalate (BBP) in the group of PAEs were monitored in simultaneously both in wastewater and sludge lines of selected two nature-based WWTPs and one advanced biological WWTP. Although it was frequently stated that phthalates were significantly removed in WWTPs in many studies found in literature, negative removal efficiencies of selected phthalates in investigated WWTPs during the sampling period were observed generally in this study. One of the reasons for this concentration increase could be releasing of phthalates from microplastics in wastewater during the treatment process or the desorption of PAEs from treatment sludge. DNOP was the compound with the highest concentration increase at almost each treatment unit of the three WWTPs. On the other hand, total PAEs load was 1997 g d(-1) in advanced biological WWTP and adsorption onto sludge of PAEs were determined as 90%. The side-stream total load returned from the decanter supernatant was 0.02% of the total PAEs load coming to advanced biological WWTP from the sewer system. As a result of detailed statistical analysis, the correlation between raw wastewater and primary clarifier (PC) effluent was determined as an increasing linear relation for DEHP and DNOP. On the other hand, moderate and strong correlations were observed both between septic tank and constructed wetland (CW) processes with raw wastewater. In the waste stabilization pond (WSP), while a significant correlation was not found between the sludge line data, homogeneous variance, strong and moderate correlations were obtained in the wastewater line data. However, while mean differences for all investigated PAEs were not significant (p > 0.05) in the wastewater line, mean differences of DEHP (p < 0.05) were significant in the sludge line according to ANOVA analysis.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Fate and Removal of Pesticides in Solid and Liquid Phases of Metropolitan, Urban and Rural-Scale Wastewater Treatment Plants
    (Elsevier, 2023) Nas, Bilgehan; Yel, Esra; Argun, M. E.; Dinc, S.; Kara, M.; Koyuncu, S.; Dolu, Taylan
    In this study, the change of occurrence, distribution, seasonal variation and removal of pesticides, atrazine (ATZ), chlorpyriphos (CPR) and chlorfenvinphos (CFV), were investigated both in liquid and solid phases of three different types of wastewater treatment plants (WWTPs). Treatment configurations of the studied WWTPs consist of a metropolitan advanced biological treatment system (4-stage Bardenpho), urban-scale waste stabilization pond (WSP) and rural-scale horizontal subsurface flow constructed wetland (HSSCW). ATZ removal efficiencies (59.8 %-92.4 %) were higher than CPR and CFV removal efficiencies at all WWTPs. CPR and CFV are removed at 78.5 % and 53.1 % efficiency, respectively, from the influent of advanced biological treatment system. CPR and CFV removals were 21.6 and 22.7 % at WSP, respectively. One of the important findings is that ATZ and CFV were removed at higher percentages in primary treatment than in biological treatment in advanced biological WWTP. Sorption onto sludge has been evaluated as an effective removal mechanism for pesticide elimination, at least as much as biodegradation/biotransformation. All investigated pesticides were detected in higher concentrations in primary sludge (168.8-399.5 mu g/kg) compared to secondary sludge (21.9-146.3 mu g/kg) in advanced biological WWTP and in facultative sludge (447.8-1044.7 mu g/kg) compared to anaerobic sludge (250.0-613.0 mu g/kg) in WSP. It was determined that ATZ was the most treated compound in the liquid phase under anaerobic conditions among the studied pesticides. In line with these results, approximately 45 % removal efficiency was determined for CPR and CFV in the anaerobic digestion process present in advanced biological WWTP.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 53
    Citation - Scopus: 58
    Occurrence, Loadings and Removal of Eu-Priority Polycyclic Aromatic Hydrocarbons (pahs) in Wastewater and Sludge by Advanced Biological Treatment, Stabilization Pond and Constructed Wetland
    (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2020) Nas, Bilgehan; Argun, Mehmet Emin; Dolu, Taylan; Ateş, Havva; Yel, Esra; Koyuncu, S.; Kara, M.
    Eight polycyclic aromatic hydrocarbon (PAH) compounds which have been accepted as priority micropollutants by European Union (EU) were analyzed both in wastewater and sludge lines throughout three full scale (located in city, sub-province and village) WWTPs during 12-month sampling period. Investigated WWTPs have different treatment types including advanced biological treatment, stabilization pond (SP) and constructed wetland (CW). Removal efficiencies for total PAH compounds varied from 48% in CW to 85% in advanced biological treatment plant. The maximum concentrations of 360-2282 ng/L observed for naphthalene in raw wastewater were decreased to 103-370 ng/L by treatment processes. Minimum concentration were detected for benzo(k)fluoranthene (B[k]F) and benzo(g,h,i)perylene (B[g,h,i]P) ranged between 8 and 12 ng/L and 19-33 ng/L, respectively. While minimum removal efficiencies were obtained for B[k]F and B[g,h,i]P maximum removal efficiencies were obtained for naphthalene in all WWTPs. PAHs present in minimum and maximum levels in the sludge samples were detected as 54 and 6826 ng/g for the B[g,h,I]P and naphthalene, respectively. Considering the removal mechanisms, PAHs have been determined to be removed by biodegradation or vaporization up to 84% and by settling (adsorption onto sludge) up to 2%. The greatest portion (99%) of naphthalene and anthracene were determined to be biodegraded or vaporized in biological treatment due to their low molecular weights. On the other hand, mechanism of adsorption onto sludge was determined as negligible for these two compounds. In addition, approximately 14% of PAHs were discharged to the receiving environment. Among the different WWTP types investigated, advanced biological treatment was found to be the most efficient plant for the removal of PAH compounds.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback