Fate and Removal of Pesticides in Solid and Liquid Phases of Metropolitan, Urban and Rural-Scale Wastewater Treatment Plants

No Thumbnail Available

Date

2023

Authors

Nas, Bilgehan
Yel, Esra
Argun, M. E.
Dolu, Taylan

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this study, the change of occurrence, distribution, seasonal variation and removal of pesticides, atrazine (ATZ), chlorpyriphos (CPR) and chlorfenvinphos (CFV), were investigated both in liquid and solid phases of three different types of wastewater treatment plants (WWTPs). Treatment configurations of the studied WWTPs consist of a metropolitan advanced biological treatment system (4-stage Bardenpho), urban-scale waste stabilization pond (WSP) and rural-scale horizontal subsurface flow constructed wetland (HSSCW). ATZ removal efficiencies (59.8 %-92.4 %) were higher than CPR and CFV removal efficiencies at all WWTPs. CPR and CFV are removed at 78.5 % and 53.1 % efficiency, respectively, from the influent of advanced biological treatment system. CPR and CFV removals were 21.6 and 22.7 % at WSP, respectively. One of the important findings is that ATZ and CFV were removed at higher percentages in primary treatment than in biological treatment in advanced biological WWTP. Sorption onto sludge has been evaluated as an effective removal mechanism for pesticide elimination, at least as much as biodegradation/biotransformation. All investigated pesticides were detected in higher concentrations in primary sludge (168.8-399.5 mu g/kg) compared to secondary sludge (21.9-146.3 mu g/kg) in advanced biological WWTP and in facultative sludge (447.8-1044.7 mu g/kg) compared to anaerobic sludge (250.0-613.0 mu g/kg) in WSP. It was determined that ATZ was the most treated compound in the liquid phase under anaerobic conditions among the studied pesticides. In line with these results, approximately 45 % removal efficiency was determined for CPR and CFV in the anaerobic digestion process present in advanced biological WWTP.

Description

Keywords

Atrazine, Chlorpyriphos, Chlorfenvinphos, Micropollutants, Pesticides, Sludge, Sewage-Treatment Plants, Personal Care Products, Emerging Contaminants, Priority Pollutants, Organic Micropollutants, Constructed Wetlands, Stabilization Ponds, Pharmaceuticals, Substances, Persistence

Turkish CoHE Thesis Center URL

Fields of Science

0211 other engineering and technologies, 02 engineering and technology, 01 natural sciences, 0105 earth and related environmental sciences

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
6

Source

Journal of Water Process Engineering

Volume

53

Issue

Start Page

103680

End Page

PlumX Metrics
Citations

CrossRef : 9

Scopus : 11

Captures

Mendeley Readers : 34

SCOPUS™ Citations

10

checked on Feb 03, 2026

Web of Science™ Citations

10

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.10716256

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo