Browsing by Author "Aydin, Mehmet Esat"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Investigation of Erosion Wear Behavior and Incubation Period of 3D-Printed ABS, PLA and Nylon-CF(Emerald Group Publishing Ltd, 2025) Aydin, Mehmet Esat; Ozturk, Osman; Bagci, MehmetPurposeThis study aims to investigate the erosion wear behavior of three-dimensional (3D)-printed Acrylonitrile Butadiene Styrene (ABS), Polylactic acid (PLA) and Nylon-CF (Nylon Carbon Fiber) parts with jet impingement test using alumina (Al2O3) particles. The effects of build orientation and impingement angle on erosion wear behavior were investigated.Design/methodology/approachABS, PLA and Nylon test specimens with build orientations of 0 degrees, 45 degrees and 90 degrees were fabricated using a 3D printer. Erosion wear tests were conducted on these specimens at impingement angles of 30 degrees, 60 degrees and 90 degrees. The erosion wear rate was determined by measuring the weight loss. EDX analysis and SEM images were obtained to find the wear characteristics.FindingsThe build orientation affected the wear resistance of ABS slightly, whereas the orientation caused more significant differences in PLA and Nylon-CF. On the other hand, 90 degrees-oriented Nylon-CF composite gained mass, unlike other materials. From this point on, the incubation period specific to the composites was investigated by gradually increasing the amount of abrasive. The abrasive mass up to 5,000 g eventually finalized the incubation period and stabilized the weight loss of Nylon-CF. EDX results and SEM images were interpreted together, proving that the mass gain in Nylon-CF was due to the embedding of alumina particles in the matrix.Originality/valueThis study contributed to the literature to better understand the erosion wear behavior of the most used polymer-based materials produced with 3D printing. The incubation period detected in the Nylon-CF sample, which was found to be due to particle embedding, added another originality.Article Simulation of Solid Particle Erosion Wear Using Discrete Element Method: Comparison of Experimental and Analysis Results(Elsevier Science Inc, 2025) Aydin, Mehmet Esat; Firat, Veysel; Bagci, MehmetThe Discrete Element Method (DEM) stands out as an effective computational tool for modeling complex mechanical wear processes such as solid particle erosion. The DEM method offers significant advantages in terms of providing realistic results, particularly when it comes to examining particle and surface interactions over time and predicting surface deformations. In this study, the effectiveness of DEM in determining the solid particle erosion wear behavior was evaluated by comparing it with experimental data. In the experimental phase, aluminum oxide (Al2O3) particles were impacted onto St37 structural steel samples at different impact angles (30 degrees, 60 degrees, 90 degrees) and different quantities (1, 2, 3 kg) to calculate erosion rates. DEM based simulation analyses were performed using the same parameters, and surface deformations were modelled. When compared with experimental data, the simulation results showed high convergence, particularly at high impact angles such as 60 degrees and 90 degrees (5-15 % deviation). However, deviations increased at low impact angles such as 30 degrees. While DEM analyses can successfully predict surface embedment deformations, they have not been able to adequately reflect damage caused by ductile behavior such as sliding. The surface embedment effect has shown a similarity of around 5 % at high impact angles compared to experimental data. In addition, ANOVA tests were applied to the erosion rates found in experiments and simulations to statistically evaluate the results. The test results statistically revealed that the most effective variable on the erosion rate was the angle of impact (p < 0.0001). The results demonstrate that the discrete element method is a reliable approach for modeling solid particle erosion wear behavior and, when used in conjunction with experimental data, can provide effective solutions for predicting and preventing erosion-induced damage during the design phase in systems such as jet engine turbines, space applications, and dust particle interaction engineering problems.

