Simulation of Solid Particle Erosion Wear Using Discrete Element Method: Comparison of Experimental and Analysis Results

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Inc

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

The Discrete Element Method (DEM) stands out as an effective computational tool for modeling complex mechanical wear processes such as solid particle erosion. The DEM method offers significant advantages in terms of providing realistic results, particularly when it comes to examining particle and surface interactions over time and predicting surface deformations. In this study, the effectiveness of DEM in determining the solid particle erosion wear behavior was evaluated by comparing it with experimental data. In the experimental phase, aluminum oxide (Al2O3) particles were impacted onto St37 structural steel samples at different impact angles (30 degrees, 60 degrees, 90 degrees) and different quantities (1, 2, 3 kg) to calculate erosion rates. DEM based simulation analyses were performed using the same parameters, and surface deformations were modelled. When compared with experimental data, the simulation results showed high convergence, particularly at high impact angles such as 60 degrees and 90 degrees (5-15 % deviation). However, deviations increased at low impact angles such as 30 degrees. While DEM analyses can successfully predict surface embedment deformations, they have not been able to adequately reflect damage caused by ductile behavior such as sliding. The surface embedment effect has shown a similarity of around 5 % at high impact angles compared to experimental data. In addition, ANOVA tests were applied to the erosion rates found in experiments and simulations to statistically evaluate the results. The test results statistically revealed that the most effective variable on the erosion rate was the angle of impact (p < 0.0001). The results demonstrate that the discrete element method is a reliable approach for modeling solid particle erosion wear behavior and, when used in conjunction with experimental data, can provide effective solutions for predicting and preventing erosion-induced damage during the design phase in systems such as jet engine turbines, space applications, and dust particle interaction engineering problems.

Description

Keywords

Discrete Element Method, ANOVA, Solid Particle Erosion Wear, Surface Damage, Impact Angle

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Particuology

Volume

107

Issue

Start Page

134

End Page

156
PlumX Metrics
Citations

Scopus : 0

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.