04. Enstitüler
Permanent URI for this communityhttps://hdl.handle.net/20.500.13091/7
Browse
Browsing 04. Enstitüler by Author "Acılar, Ayşe Merve"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Sefalometrik Noktaların Derin Öğrenme Kullanarak Otomatik Tespiti(Konya Teknik Üniversitesi, 2022) Njikam, Mohamed Nourdine Mogham; Babalık, Ahmet; Uzbaş, Betül; Acılar, Ayşe MerveGünümüzde her sektörde bilgisayarlar kullanılarak büyük miktarda veriler toplanmaktadır. Sağlık, savunma sanayi, uzay ve siber güvenlik gibi alanlarda makine öğrenmesi yöntemleri kullanılarak, toplanan bu veri yığınları yüksek başarı oranlarıyla raporlanıp bunlardan anlamlı bilgiler çıkarılabilmektedir. Medikal görüntü analizi alanında yapılan araştırmalara ilgi artmasıyla birlikte uzmanlar, kritik tıbbi analiz problemlerini ele almak için ilginç ve etkili yöntemlere yönelmiştir. Bu alanlardan biri de sefalometrik analizdir. Sefalometrik işaretler hastalık teşhisleri, oral ve maksillofasiyal cerrahi alanlarında değerlendirme ve kraniyofasiyal büyüme tahmini, tedavi planı, küratif etkisini değerlendirme ve farklı olguları karşılaştırmak için kullanılmaktadır. Bu tez çalışmasında Evrişimsel Sinir Ağları (ESA) kullanılarak sefalometrik noktalarının otomatik tespitini yapan bir U-Net modeli geliştirilmiştir. 2015 IEEE Uluslararası Biyomedikal Görüntüleme Sempozyumu içinde Sefalometrik X-ray Görüntü Analizi Yarışması'nın himayesinde oluşturulmuş sefalometrik görüntüler kullanılmıştır. Toplam 19 Sefalometrik nokta otomatik tespit edilmiştir. 2 mm aralığında 74,0% Başarılı Algılama Oranı (BAO), 2,5 mm aralığında 81,4%, 3 mm aralığında 86,3% ve 4mm aralığında ise 92,2% BAO elde edilmiştir.

