PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collections
Permanent URI for this collectionhttps://hdl.handle.net/20.500.13091/5
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collections by Access Right "info:eu-repo/semantics/closedAccess"
Now showing 1 - 20 of 109
- Results Per Page
- Sort Options
Article Citation - WoS: 2Citation - Scopus: 2Adrenal Lesion Classification With Abdomen Caps and the Effect of Roi Size(Springer, 2023) Solak, Ahmet; Ceylan, Rahime; Bozkurt, Mustafa Alper; Cebeci, Hakan; Koplay, MustafaAccurate classification of adrenal lesions on magnetic resonance (MR) images are very important for diagnosis and treatment planning. The detection and classification of lesions in medical imaging heavily rely on several key factors, including the specialist's level of experience, work intensity, and fatigue of the clinician. These factors are critical determinants of the accuracy and effectiveness of the diagnostic process, which in turn has a direct impact on patient health outcomes. With the spread of artificial intelligence, the use of computer-aided diagnosis (CAD) systems in disease diagnosis has also increased. In this study, adrenal lesion classification was performed using deep learning on MR images. The data set used was obtained from the Department of Radiology, Faculty of Medicine, Selcuk University, and all adrenal lesions were identified and reviewed in consensus by two radiologists experienced with abdominal MR. Studies were carried out on two different data sets created by T1- and T2-weighted MR images. The data set consisted of 112 benign and 10 malignant lesions for each mode. Experiments were performed with regions of interest (ROIs) of different sizes to increase the working performance. Thus, the effect of the selected ROI size on the classification performance was assessed. In addition, instead of the convolutional neural network (CNN) models used in deep learning, a unique classification model structure called Abdomen Caps was proposed. When the data sets used in classification studies are manually separated for training, validation, and testing, different results are obtained with different data sets for each stage. To eliminate this imbalance, tenfold cross-validation was used in this study. The best results obtained were 0.982, 0.999, 0.969, 0.983, 0.998, and 0.964 for accuracy, precision, recall, F1-score, area under the curve (AUC) score, and kappa score, respectively.Article Citation - WoS: 9Citation - Scopus: 11Adrenal Tumor Segmentation Method for Mr Images(ELSEVIER IRELAND LTD, 2018) Barstuğan, Mücahid; Ceylan, Rahime; Asoğlu, Semih; Cebeci, Hakan; Koplay, MustafaBackground and objective: Adrenal tumors, which occur on adrenal glands, are incidentally determined. The liver, spleen, spinal cord, and kidney surround the adrenal glands. Therefore, tumors on the adrenal glands can be adherent to other organs. This is a problem in adrenal tumor segmentation. In addition, low contrast, non-standardized shape and size, homogeneity, and heterogeneity of the tumors are considered as problems in segmentation. Methods: This study proposes a computer-aided diagnosis (CAD) system to segment adrenal tumors by eliminating the above problems. The proposed hybrid method incorporates many image processing methods, which include active contour, adaptive thresholding, contrast limited adaptive histogram equalization (CLAHE), image erosion, and region growing. Results: The performance of the proposed method was assessed on 113 Magnetic Resonance (MR) images using seven metrics: sensitivity, specificity, accuracy, precision, Dice Coefficient, Jaccard Rate, and structural similarity index (SSIM). The proposed method eliminates some of the discussed problems with success rates of 74.84%, 99.99%, 99.84%, 93.49%, 82.09%, 71.24%, 99.48% for the metrics, respectively. Conclusions: This study presents a new method for adrenal tumor segmentation, and avoids some of the problems preventing accurate segmentation, especially for cyst-based tumors. (C) 2018 Elsevier B.V. All rights reserved.Article Citation - WoS: 50Citation - Scopus: 55Advanced Oxidation of Landfill Leachate: Removal of Micropollutants and Identification of By-Products(ELSEVIER, 2021) Ateş, Havva; Argun, Mehmet EminLandfill leachate contains several macropollutants and micropollutants that cannot be removed efficiently by conventional treatment processes. Therefore, an advanced oxidation process is a promising step in post or pre-treatment of leachate. In this study, the effects of Fenton and ozone oxidation on the removal of 16 emerging micropollutants including polycyclic aromatic hydrocarbons (PAHs), phthalates, alkylphenols and pesticides were investigated. The Fenton and ozone oxidation of the leachate were performed with four (reaction time: 20-90 min, Fe(II) dose: 0.51-2.55 g/L, H2O2 dose: 5.1-25.5 g/L and pH: 3-5) and two (ozonation time: 10-130 min and pH: 4-10) independent variables, respectively. Among these operating conditions, reaction time played more significant role (p-value < 0.05) in eliminating di-(2-Ethylhexyl) phthalate, 4-nonylphenol and 4-tert-octylphenol for both processes. The results showed that Fenton and ozone oxidation processes had a high degradation potential for micropollutants except for the PAHs including four and more rings. Removal efficiencies of micropollutants by ozone and Fenton oxidation were determined in the range of 5-100%. Although the removal efficiencies of chemical oxygen demand (COD) and some micropollutants such as phthalates were found much higher in the Fenton process than ozonation, the degradation products occurred during the Fenton oxidation were a higher molecular weight. Moreover, the oxidation intermediates for the both processes were found as mainly benzaldehyde, pentanoic acid and hydro cinnamic acid as well as derivatives of naphthalenone and naphthalenediol. Also, acid ester with higher molecular weight, naphthalene-based and phenolic compounds were detected in the Fenton oxidation.Review Citation - WoS: 25Citation - Scopus: 29Aerogels as Promising Materials for Antibacterial Applications: a Mini-Review(ROYAL SOC CHEMISTRY, 2021) Kaya Güzel, Gülcihan; Aznar, Elena; Deveci, Hüseyin; Martinez-Manez, RamonThe increasing cases of bacterial infections originating from resistant bacteria are a serious problem globally and many approaches have been developed for different purposes to treat bacterial infections. Aerogels are a novel class of smart porous materials composed of three-dimensional networks. Recently, aerogels with the advantages of ultra-low density, high porosity, tunable particle and pore sizes, and biocompatibility have been regarded as promising carriers for the design of delivery systems. Recently, aerogels have also been provided with antibacterial activity through loading of antibacterial agents, incorporation of metal/metal oxides and via surface functionalization and coating with various functional groups. In this mini-review, the synthesis of aerogels from both conventional and low-cost precursors is reported and examples of aerogels displaying antibacterial properties are summarized. As a result, it is clear that the encouraging antibacterial performance of aerogels promotes their use in many antibacterial applications, especially in the food industry, pharmaceutics and medicine.Article Citation - WoS: 5Citation - Scopus: 6Appraisal of Inorganic and Lignocellulosic Organic Shell Wastes as a Green Filler in Epoxy-Based Hybrid Composites(Elsevier, 2025) Ahmetli, Gulnare; Kocaman, Suheyla; Soydal, Ulku; Kocak, Beril; Ozmeral, Nimet; Musayev, NijatHybrid composites are now becoming increasingly important regarding economic and ecological compatibility. This study presented the research results that evaluate the feasibility of using cherry pit shell (CPSh) and chicken eggshell (ChESh) natural wastes as a new hybrid filler mixture for the first time. CPSh and ChESh can reduce the composite material cost and increase the biobased content. CPSh was treated with a 5 % NaOH alkali solution to enhance the lignocellulosic filler-matrix interfacial interaction. Hybrid green organic and inorganic fillers were used in the epoxy matrix (ER). Morphological, water absorption, thermal, and mechanical performance of hybrid composites were investigated. The tensile strength of ER increased max. by 5.73, 7.3, 17.98, and 14.27 % in the case of raw CPSh, ChESh, and hybrid filler mixtures at 1:1 and 1:3 wt mixing ratios of alkali-treated CPSh (NaOHCPSh) and ChESh, respectively. The composites' thermal stability and dynamic-mechanical properties in different aging environments (seawater and hydrothermal) were examined by thermogravimetric analysis (TGA) and dynamic-mechanical analysis (DMA). Hydrothermal was the most affected aging condition on the composite properties. In addition, ANOVA is applied to find the significant effect of different weight percentages of hybrid fillers on the mechanical properties of composites.Article Citation - WoS: 11Citation - Scopus: 19Artificial Intelligence in Healthcare Competition (teknofest-2021): Stroke Data Set(AVES, 2022) Koç, U.; Sezer, E.A.; Özkaya, Y.A.; Yarbay, Y.; Taydaş, O.; Ayyıldız, V.A.; Bahadır, MuratObjective: The artificial intelligence competition in healthcare was organized for the first time at the annual aviation, space, and technology festival (TEKNOFEST), Istanbul/Türkiye, in September 2021. In this article, the data set preparation and competition processes were explained in detail; the anonymized and annotated data set is also provided via official website for further research. Materials and Methods: Data set recorded over the period covering 2019 and 2020 were centrally screened from the e-Pulse and Teleradiology System of the Republic of Türkiye, Ministry of Health using various codes and filtering criteria. The data set was anonymized. The data set was prepared, pooled, curated, and annotated by 7 radiologists. The training data set was shared with the teams via a dedicated file transfer protocol server, which could be accessed using private usernames and passwords given to the teams under a non-disclosure agreement signed by the representative of each team. Results: The competition consisted of 2 stages. In the first stage, teams were given 192 digital imaging and communications in medicine images that belong to 1 of 3 possible categories namely, hemorrhage, ischemic, or non-stroke. Teams were asked to classify each image as either stroke present or absent. In the second stage of the competition, qualifying 36 teams were given 97 digital imaging and communications in medicine images that contained hemorrhage, ischemia, or both lesions. Among the employed methods, Unet and DeepLabv3 were the most frequently observed ones. Conclusion: Artificial intelligence competitions in healthcare offer good opportunities to collect data reflect-ing various cases and problems. Especially, annotated data set by domain experts is more valuable. © 2022, AVES. All rights reserved.Article Assessment of Accumulation, Spatial Distribution and Sources of Potentially Toxic Elements (PTEs) in Sediments of a Saline Lake(Taylor & Francis Inc, 2025) Huseyinca, Mehmet Yavuz; Kupeli, SuayipPotentially Toxic Elements (PTEs) are hazardous for human and ecosystem health due to their non-biodegradable nature. In this study we investigated the concentrations of PTEs, including As, Co, Cr, Cu, Mn, Mo, Ni, Pb and V in sediments of Lake Tuz around the salt pans for possible contamination. Lake Tuz is a shallow saline lake where halite (table salt) production is carried out in the salt pans and has significant geo and eco-tourism potential due to its unique ecosystem and natural beauty. The extent of pollution level and ecological risk were evaluated by geochemical indices and guideline values. According to the Geoaccumulation Index (Igeo), Enrichment Factor (EF) and Contamination Factor (Cf) indices Cr, Mo, As and occasionally Ni accumulated in moderate to strong levels. Intensity maps of Pollution Load Index (PLI) and Modified Degree of Contamination (mCdeg) indicated pollution hotspots in the neck region and in the eastern shore of the lake respectively. The Potential Ecological Risk Index (PERI) values indicated low and moderate levels of ecological risk. Statistical analyses including Pearson Correlation Coefficient (PCC), Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) suggested that Co, Cr, Cu, Mn, Mo, Ni and V are of geogenic origin and As and Pb are of anthropogenic origin. Provenance analysis suggested that host rocks for geogenic PTEs were granodiorites and ophiolites situated in the catchment area of the lake. Anthropogenic PTEs were most likely related to agrochemicals used in surrounding farmlands.Article Automatic Phase Reversal Detection in Routine Eeg(CHURCHILL LIVINGSTONE, 2020) Yıldırım, Sema; Koçer, Hasan Erdinç; Ekmekçi, Ahmet HakanElectroencephalograph (EEG), a valuable tool in the clinical evaluation, is readily available, safe and provides information about brain function. EEG interpretation is important for the diagnosis of neurological disorders. The long-term EEG data may be required to document and study neurosciences that include many epileptic activities and phase reversal (PR) etc. However, analyze of the long-term EEG done by an expert neurologist is much time consuming and quite difficult. Therefore, an automatic PR determination method for analyzing of long-term EEG is described in this study. The presented technique was applied to the pathological EEG recordings that were obtained from two different datasets gathered as a retrospective in Selcuk University Hospital (SUH) and Boston Children's Hospital (BCH). With this method, PR in the dataset was determined and then compared with the ones detected by the specialist doctor. Two tests were carried out in the SUH dataset and the classification success of the method was 83.22% for test 1 and 85.19% for test 2. On the other hand, three tests were carried out for two different position values for BCH dataset. The highest classification success of the six tests was 75% for test 5, while the lowest classification success appeared as 58.33% for test 6. As a result, the overall success in the detection of PR with the conducted method is 84.20% for SUH and 66.7% for BCH. According to these results, the determination of PR that is known to be indicative of neurological disorders and presenting them to expert information will accelerate the interpretation of long-term EEG recordings.Article Citation - WoS: 37Citation - Scopus: 47Behaviour of Waste Polypropylene Pyrolysis Char-Based Epoxy Composite Materials(SPRINGER HEIDELBERG, 2020) Soğancıoğlu, Merve; Yel, Esra; Ahmetli, GülnareIn this study, polypropylene (PP) plastic wastes were pyrolysed. Solid pyrolysis product (char) was used as filler material for the preparation of epoxy composite. 300, 400, 500, 600 and 700 degrees C were selected as final pyrolysis temperatures. Solid pyrolysis product (char) was analysed by elemental, FTIR, SEM, BET and TGA analysis. The epoxy composite samples were prepared with char obtained from pyrolysis. Mechanical properties of composites were analysed by hardness, tensile strength, elongation at break, electrical conductivity tests to explain the effects of pyrolysis temperature and char doses over composite properties. Thermogravimetric properties of composites were determined by TGA analyses. The water absorption behaviour of composite samples was determined by water adsorption test. Epoxy composite produced from PP char obtained under 300 degrees C showed the most ideal behaviour.Article Citation - WoS: 12Citation - Scopus: 15Biopolymeric Nanofibrous Scaffolds of Poly(3-hydroxybuthyrate)/Chitosan Loaded With Biogenic Silver Nanoparticle Synthesized Using Curcumin and Their Antibacterial Activities(Elsevier B.V., 2024) Bayram, Sarıipek, F.The increasing prevalence of multi-drug resistant bacteria poses a significant threat to public health, especially in wound infections. Developing new bactericidal agents and treatment strategies is crucial to address this issue. In this study, biopolymeric nanofibrous scaffolds containing green-synthesized silver nanoparticles (AgNPs) with curcumin (CUR) were evaluated as antimicrobial materials for wound healing therapy. Firstly, CUR was utilized to synthesize AgNPs, which were then analyzed using various analytical methods. The microstructural analysis revealed that the biogenic AgNPs, which had a spherical shape and an average size of 19.83 nm, were uniformly anchored on PHB/CTS nanofibers. Then, the AgNPs with various content (0.25–1%wt) were incorporated into PHB/CTS matrix to enhance its wettability, thermal and bactericidal behaviors. The nanofibrous scaffolds were characterized by FT-IR, FE-SEM, TGA analysis and water contact angle measurement. Overall, the addition of CUR-AgNPs to the PHB/CTS matrix led to a reduction in fiber diameter, enhanced hydrophilicity and improved thermal properties. Additionally, antibacterial activity against Staphylococcus aureus and Escherichia coli was performed on samples of AgNPS and PHB/CTS/CUR-Ag. The synthesized AgNPs showed antibacterial activity against both microorganisms, especially against S. aureus. Higher concentrations of AgNPs in nanofibers led to a significant reduction in bacterial colony formation. The results displayed that PHB/CTS/CUR-AgNPs nanofibrous scaffolds could be a promising material for the biomedical applications such as wound healing. © 2023 Elsevier B.V.Article Citation - WoS: 44Citation - Scopus: 47Biosorption of Methylene Blue and Malachite Green on Biodegradable Magnetic Cortaderia Selloana Flower Spikes: Modeling and Equilibrium Study(TAYLOR & FRANCIS INC, 2021) Parlayıcı, Şerife; Pehlivan, ErolThis study involves the production of a novel biosorbent obtained fromCortaderia selloanaflower spikes (CSFs). MagneticC. selloanaflower spikes (nM infinity CSFs) was applied as an ideal biosorbent for the elimination of dyes from water. They were utilized for the removal from aqueous solutions of malachite green (MG) and methylene blue (MB) dyes. The analyses of the equilibrium were done under certain experimental parameters such as contact time, initial dye concentration, pH, and quantity of biosorbent. The rapid intake of dyes to reach the equilibrium in a short period time showed the effectiveness of nM infinity CSFs to adsorb MG and MB. The experimental information of MB and MG was obtained from the Langmuir model and it confirmed the magnificent dye biosorption ability; 72.99 mg/g for CSFs/MB, 119.05 mg/g for nM infinity CSFs/MB, 31.06 mg/g for CSFs/MG, and 56.50 mg/g for nM infinity CSFs/MG. Langmuir's model affirmed the excellent dye biosorption ability. The pseudo-second-order kinetic model displayed a great fit to the experimental result for the removal of MG and MB. The nM infinity CSFs compared with raw biosorbent affirmed that the magnetic form of the biosorbent has a greater removal ability for MB and MG. nM infinity CSFs is a noteworthy biosorbent for MB and MG removal from wastewater. [GRAPHICS] HIGHLIGHTS Magnetic Cortaderia selloana flower spikes (nM1CSFs) was synthesized for the biosorption of dyes FT-IR and SEM analysis were used for characterization. The Langmuir isotherm model fitted the data of the adsorption for nM1CSFs nM1CSFs is a noteworthy biosorbent for MB and MG removal from wastewater.Article Citation - WoS: 16Citation - Scopus: 21Carcinogenic-Potential Ecological Risk Assessment of Soils and Wheat in the Eastern Region of Konya (turkey)(SPRINGER HEIDELBERG, 2021) Öztürk, Alican; Arıcı, Ömer KağanThe drainage channel where the wastewater of Konya city center is discharged, the solid waste storage center, the soils surrounding the industrial area, the potential accumulation of toxic elements (PTE) accumulated in the wheat grown in these soils, and their effects on human health were examined. Between 1977 and 2010, the water in the drainage channel was used for a variety of crops, mainly wheat grown in the nearby agricultural areas until the commissioning of the wastewater treatment plant. Industrial facilities, solid waste landfills, and military firing areas are actively used and are thought to be important factors in heavy metal accumulation in soils. In addition, the investigation area is on the sediments of the deposits stored in the large Konya Lake depending on the geological structure around Konya and caused geogenic heavy metal accumulation as a result of the separation and transportation of ophiolitic, magmatic, metamorphic, and sedimentary rocks in the region. In the research, PTE accumulation was determined in the samples of N1 (Pb, As, and Hg), N9 (Cd, As), and N10 (Cd and As) and N8 (Pb) in wheat. The carcinogenic risk factor of Ni, Al, Mn, and Cr elements in the territory of the region has been found as medium for children and adults. It has been determined that the potential source of toxic elements does not only depend on anthropogenic events but also occurs as a result of geological events.Article Citation - WoS: 5Citation - Scopus: 5Catalytic Effect of Nickel Oxide Nanoparticles From Lupinus Albus Extract on Green Synthesis and Photocatalytic Reduction of Methylene Blue: Kinetics and Mechanism(Taylor & Francis Inc, 2024) Yılmaz, Mine; Ceyhan, A. Abdullah; Baytar, OrhanGreen synthesis of nanomaterials is advancing due to their ease of synthesis, cheapness, nontoxicity, and renewability. An environmentally friendly biogenic method has been developed for the green synthesis of nickel oxide nanoparticles (NiO NPs) using phytochemical-rich bioextract. They are rich in bioextract phenolics, flavonoids, and berberine. These phytochemicals successfully reduce and stabilize NiNO3 into NiO NPs. In this study, NiO NPs were synthesized by the green synthesis method from Lupinus Albus. Characterization of NiO NPs was carried out by TEM, XRD, SEM, UV, XRF, BET, and EDX analyses. According to XRD analysis, TEM results also support this, where the NiO NPs particle size diameter is 5 nm. It was determined by the Tauc equation that the band energy gap of NiO NPs is 1.69 eV. It was determined that the BET surface area of NiO NPs was 49.6 m2/g. NiO nanoparticles synthesized from Lupinus Albus extract by the green synthesis method were used as catalysts in the photocatalytic reduction of methylene blue with NaBH4. In the photocatalytic reduction of methylene blue with NaBH4, it was determined that there was no color change in 48 h without a catalyst, and in the presence of NiO nanoparticle catalyst, methylene blue was reduced by 97% in 8 min. The kinetics of the photocatalytic reduction of methylene blue with NaBH4 is a pseudo-first-order kinetic model and the kinetic rate constant is determined as 0.66 min-1, indicating that the catalytic effect of NiO NPs is very high at this value. NiO NPs were used five times in the photocatalytic reduction of methylene blue with NaBH4 and it was determined that the reduction of methylene blue was over 90% in each use. NiO nanoparticles were synthesized from Lupinus Albus extract by green synthesis, which is an easily applied, cost-effective, and environmentally friendly method. The synthesized NiO nanoparticles were characterized using various characterization techniques. NiO nanoparticles have a high catalytic effect in the photocatalytic reduction of methylene blue with NaBH4. Photocatalytic reduction of methylene blue with uncatalyzed NaBH4 could not be achieved, and 97% reduction of methylene blue was completed in 8 min in the presence of NiO nanoparticle catalyst.Article Citation - WoS: 2Citation - Scopus: 2Chitosan-Coated Black Sesame (sesamum Indicum L.) Seed Pulp as a Novel Candidate Adsorbent for Cr(vi) Elimination(IWA PUBLISHING, 2019) Parlayıcı, Şerife; Tuna, Kübra; Özdemir, Elif; Pehlivan, ErolThis study evaluates the application of Cr(VI) adsorption from the prepared synthetic solution by black sesame (Sesamum indicum L.) seed pulp (BSSP) and chitosan (Cts)-coated black sesame seed pulp beads (Cts-BSSP). BSSP and Cts-BSSP were used as an adsorbent without any chemical or physical treatment to remove Cr(VI) from an aqueous medium. The results indicated that the Cr(VI) removal was pH-dependent and reached an optimum at pH 2.0. It has been observed that the percentage of adsorption increased from 62% to 95% when the amount of Cts-BSSP increased from 0.0125 g to 0.0250 g. The required adsorbent amount for the maximum removal was 0.05 g and 0.1 g for Cst-BSSP and BSSP, respectively. The contact time for the adsorption was 120 min and 90 min for BSSP and Cst-BSSP, respectively. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to explore the possible adsorption mechanism for Cr(VI). The equilibrium data for the BSSP and Cts-BSSP were used with the Langmuir and Freundlich adsorption isotherm models to assess the adsorption capacity and relevant mechanism. The adsorption capacity of the Cts-BSSP for Cr(VI) is relatively high compared to BSSP. The monolayer maximum adsorption capacities for Cr(VI) ions were 31.44 and 18.32 mg/g for Cts-BSSP and BSSP, respectively.Article Citation - Scopus: 1Co-Flotation of Effluents From Detergent and Marble Processing Industries in Denver and Dispersed Air Flotation Systems(Elsevier Ltd, 2024) Yel, E.; Onen, V.; Kalem, M.Suspended solids in the marble processing wastewater (MPWW) have the potential to pollute receiving media. Likewise, detergent production wastewater (DPWW) needs treatment prior to discharge as they include surfactants and others. Flotation and its modifications are common for separation purposes in various engineering solutions. To increase flotation performance by changing the surface tension some collector and frother chemicals, surfactants are utilized. Detergents are among important surfactants and they may act as both frother and collector in flotation. Therefore, the purpose of this study was to determine the effectiveness of DPWW in co-flotation with MPWW. Two effluents were mixed at varying ratios and dispersed air (DISP) and Denver (DEN) flotation co-treatment were applied to the mixtures. Volume ratio, time and air flow rate on treatment performance were investigated. Turbidity, solids, COD, phosphate removals were achieved at varying levels when the flotation was applied to the mixture. The highest treatment performance was achieved at 90%MPWW-10%DPWW mixture. 10 min flotation time and 2 L min−1 air flow rate for the DEN system, and 20 min and 6 L min−1 for the DISP system were recommended. Under these conditions turbidity, SS, COD, phosphate and alkalinity residuals (and removal efficiencies) were 2400 NTU(82%), 1720 mg.L−1(89%), 313.6 mg.L−1(10%), 20 mg.L−1(20%) and 600 mg.L−1CaCO3(92%) in the DEN system, respectively. Whereas, in the DISP system, under the same conditions, final values of 1880 NTU(86%), 1540 mg.L−1(91%), 262 mg.L−1(17%), 21 mg.L−1(20%) and 470 mg.L−1(94%) were obtained, respectively. The highest SludgeSS concentration increased up to 19300 mg.L−1 in the 90%–10% mixture. In all samples, dewaterable sludge was obtained. By this study, co-flotation of these two effluents was recommended. Within SDGs, this approach will replace frother chemical usage. The process performance can further be enhanced via flotation modifications and technology can be developed as further study. © 2024 Elsevier LtdArticle Citation - WoS: 5Citation - Scopus: 5Combined Use of Bwm-Topsis Methods in the Selection of Thermal Power Plant Installation Site in the Karapinar/Turkiye Region, at Risk of Sinkhole Formation(Springer Science and Business Media Deutschland GmbH, 2024) Gumussoy, A.D.; Onen, V.; Yalpir, S.With the rapidly increasing world population and the need for industrialization, energy supply has become an important global problem. A significant part of the world's energy needs is provided by fossil fuels. About half of all global coal deposits are low-quality coals, including lignite. Karapınar/Konya, also the study area, has Turkiye's second richest lignite reserve. The region's lignite reserve can be used in thermal power plants for electricity generation in terms of its nature and the amount is an important opportunity to meet the energy demand for both region and country. The region contains many sinkholes, and the potential for the formation of new sinkholes makes the site selection for thermal power plants in the region an even more strategic decision. This study aims to propose the most suitable thermal power plant site for the region by using Multi-Criteria Decision Making methods and Geographic Information Systems in an integrated way. Within the scope of the study, a total of twelve sub-criteria were taken into consideration under the main criteria of Geological, Economic and Environmental. The Best–Worst Method was applied to determine the criteria weights, and by using the weights, a suitability map for the thermal power plant installation site was produced and candidate regions were determined. TOPSIS was applied to determine the most suitable location among the candidate regions. The Candidate Region in the easternmost part of Karapinar district was chosen as the most suitable site for the thermal power plant installation. © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.Article Citation - WoS: 36Citation - Scopus: 43Comparison of Advanced Biological Treatment and Nature-Based Solutions for the Treatment of Pharmaceutically Active Compounds (phacs): a Comprehensive Study for Wastewater and Sewage Sludge(ELSEVIER, 2021) Nas, Bilgehan; Dolu, Taylan; Argun, Mehmet Emin; Yel, Esra; Ateş, Havva; Koyuncu, SerdarPassing of pharmaceutical residues into environment in an uncontrolled manner as a result of continuous increase in drug consumption across the globe has become a threatening problem for the ecosystems and almost all living creatures. In this study, diclofenac (DCF), carbamazepine (CBZ), 17 beta-estradiol (17 beta-E2) and 17 alpha ethynylestradiol (EE2) belonging to different therapeutic classes were investigated simultaneously in advanced biological treatment and nature-based treatments during 12-months sampling campaign. In this context, behavior patterns of pharmaceutically active compounds (PhACs) throughout the both wastewater and sludge lines in advanced biological wastewater treatment plant (WWTP), wastewater stabilization pond (WSP) and constructed wetland (CW) were discussed in detail based on each treatment processes seasonally. Furthermore, statistically evaluated data obtained in full-scale WWTPs were compared with each other in order to determine the valid removal mechanisms of these pharmaceutical compounds. While DCF and CBZ were detected very intensively both in the wastewater and sludge lines of the investigated WWTPs, steroid hormones,17 beta-E2 and EE2, were determined below the LOQ value in general. Annual average removal efficiencies achieved in studied WWTPs for DCF ranged between & minus;23.3% (in CW) and 75.2% (in WSP), while annual average removal rates obtained for CBZ varied between & minus;20.7% (in advanced biological treatment) and 10.0% (in CW). It has been found that DCF was highly affected by different wastewater treatment processes applied in the WWTPs compared to CBZ which showed extraordinary resistance to all different treatment processes. Although calculated in different rates for each compounds, biodegradation/biotransformation and sorption onto sewage sludge were determined as the main removal mechanisms for PhACs in plants. Although showed a similar behavior in the sludge dewatering unit (decanter) present in the advanced biological WWTP, quite different behaviors ob-served in the anaerobic digester for DCF (up to 15% decrease) and CBZ (up to 95% increase). Sorption and desorp-tion behaviors of DCF and CBZ were also evaluated in the sludge treatment processes found in advanced biological WWTP. Percentages of originated extra annual average of pharmaceutical loads were calculated as 0.64% and 0.90% for DCF and CBZ, respectively in the advanced biological WWTP due to the sidestream caused by the sludge dewatering unit. (c) 2021 Elsevier B.V. All rights reserved.Article Citation - WoS: 20Citation - Scopus: 20Comparison of Microbiota and Volatile Organic Compounds in Milk From Different Sheep Breeds(Elsevier Inc., 2021) Yusuf, B.; Ezgi, T.A.; Gonca, S.; Telli, Nihat; Gürkan, U.In this study, we compared the microbiota and volatile organic compounds (VOC) present in the milk obtained from 3 different sheep breeds, namely Merino, Lacaune, and Assaf. Udder milk was collected from 21 animals, 7 from each breed. Bacterial microflora was determined metagenomically by extracting the DNA from the milk and analyzing the V3-V4 region of the 16S rRNA gene. Headspace solid-phase microextraction gas chromatography-mass spectrometry method was used to analyze VOC. The metagenomic analysis revealed (for Merino, Lacaune, and Assaf milk, respectively) Firmicutes (66.32, 69.36, and 57.08%), Actinobacteria (19.09, 7.67, and 19.40%), Proteobacteria (13.76, 21.06, and 22.19%), and Bacteroidetes (0.84, 1.91, and 1.33%) phyla in the milk samples. Lactobacillus was highly abundant in the milk of 3 breeds (29.64, 43.50, and 18.70%). The genera constituting more than 2% of all bacteria in all groups were Jeotgalicoccus (7.19, 5.34, and 10.77%), Enterococcus (5.18, 9.78, and 3.64%), and Corynebacterium (4.08, 3.00, and 13.44%). A total of 32 different VOC were identified by headspace solid-phase microextration analysis with 9, 30, and 24 different compounds from Merino, Lacaune, and Assaf breeds, respectively. Although ketone was the most abundant compound in Merino milk (71.84%), hydrocarbons were the most detected in Lacaune and Assaf milk (37.18% and 55.42%, respectively). A positive correlation was found between acetone, which was detected at the highest level in all groups, with Salinicoccus, Alloiococcus, Psychrobacter, and Dietzia. In addition, a negative correlation was found between the Lactobacillus genus, detected at the highest level in all groups, with methyl cyclopentane, 3-methylheptane, octane, decane, 3,3-dimethyloctane, and dodecane. Thus, differences were observed in the bacterial microflora and VOC in the sheep milk from different breeds under different feeding and breeding conditions. © 2021 American Dairy Science AssociationArticle Citation - WoS: 3Citation - Scopus: 4A Comprehensive Evaluation of Oversampling Techniques for Enhancing Text Classification Performance(Nature Portfolio, 2025) Taskiran, Salimkan Fatma; Turkoglu, Bahaeddin; Kaya, Ersin; Asuroglu, TuncClass imbalance is a common and critical challenge in text classification tasks, where the underrepresentation of certain classes often impairs the ability of classifiers to learn minority class patterns effectively. According to the "garbage in, garbage out" principle, even high-performing models may fail when trained on skewed distributions. To address this issue, this study investigates the impact of oversampling techniques, specifically the Synthetic Minority Over-sampling Technique (SMOTE) and thirty of its variants, on two benchmark text classification datasets: TREC and Emotions. Each dataset was vectorized using the MiniLMv2 transformer model to obtain semantically rich representations, and classification was performed using six machine learning algorithms. The balanced and imbalanced scenarios were compared in terms of F1-Score and Balanced Accuracy. This work constitutes, to the best of our knowledge, the first large-scale, systematic benchmarking of SMOTE-based oversampling methods in the context of transformer-embedded text classification. Furthermore, statistical significance of the observed performance differences was validated using the Friedman test. The results provide practical insights into the selection of oversampling techniques tailored to dataset characteristics and classifier sensitivity, supporting more robust and fair learning in imbalanced natural language processing tasks.Article Citation - WoS: 7Citation - Scopus: 12A Comprehensive Study of Brain Tumour Discrimination Using Phase Combinations, Feature Rankings, and Hybridised Classifiers(SPRINGER HEIDELBERG, 2020) Koyuncu, Hasan; Barstuğan, Mücahid; Öziç, Muhammet ÜsameThe binary categorisation of brain tumours is challenging owing to the complexities of tumours. These challenges arise because of the diversities between shape, size, and intensity features for identical types of tumours. Accordingly, framework designs should be optimised for two phenomena: feature analyses and classification. Based on the challenges and difficulty of the issue, limited information or studies exist that consider the binary classification of three-dimensional (3D) brain tumours. In this paper, the discrimination of high-grade glioma (HGG) and low-grade glioma (LGG) is accomplished by designing various frameworks based on 3D magnetic resonance imaging (3D MRI) data. Accordingly, diverse phase combinations, feature-ranking approaches, and hybrid classifiers are integrated. Feature analyses are performed to achieve remarkable performance using first-order statistics (FOS) by examining different phase combinations near the usage of single phases (T1c, FLAIR, T1, and T2) and by considering five feature-ranking approaches (Bhattacharyya, Entropy, Roc,ttest, and Wilcoxon) to detect the appropriate input to the classifier. Hybrid classifiers based on neural networks (NN) are considered due to their robustness and superiority with medical pattern classification. In this study, state-of-the-art optimisation methods are used to form the hybrid classifiers: dynamic weight particle swarm optimisation (DW-PSO), chaotic dynamic weight particle swarm optimisation (CDW-PSO), and Gauss-map-based chaotic particle-swarm optimisation (GM-CPSO). The integrated frameworks, including DW-PSO-NN, CDW-PSO-NN, and GM-CPSO-NN, are evaluated on the BraTS 2017 challenge dataset involving 210 HGG and 75 LGG samples. The 2-fold cross-validation test method and seven metrics (accuracy, AUC, sensitivity, specificity, g-mean, precision, f-measure) are processed to evaluate the performance of frameworks efficiently. In experiments, the most effective framework is provided that uses FOS, data including three phase combinations, the Wilcoxon feature-ranking approach, and the GM-CPSO-NN method. Consequently, our framework achieved remarkable scores of 90.18% (accuracy), 85.62% (AUC), 95.24% (sensitivity), 76% (specificity), 85.08% (g-mean), 91.74% (precision), and 93.46% (f-measure) for HGG/LGG discrimination of 3D brain MRI data.

