Catalytic Effect of Nickel Oxide Nanoparticles From Lupinus Albus Extract on Green Synthesis and Photocatalytic Reduction of Methylene Blue: Kinetics and Mechanism
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis Inc
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Green synthesis of nanomaterials is advancing due to their ease of synthesis, cheapness, nontoxicity, and renewability. An environmentally friendly biogenic method has been developed for the green synthesis of nickel oxide nanoparticles (NiO NPs) using phytochemical-rich bioextract. They are rich in bioextract phenolics, flavonoids, and berberine. These phytochemicals successfully reduce and stabilize NiNO3 into NiO NPs. In this study, NiO NPs were synthesized by the green synthesis method from Lupinus Albus. Characterization of NiO NPs was carried out by TEM, XRD, SEM, UV, XRF, BET, and EDX analyses. According to XRD analysis, TEM results also support this, where the NiO NPs particle size diameter is 5 nm. It was determined by the Tauc equation that the band energy gap of NiO NPs is 1.69 eV. It was determined that the BET surface area of NiO NPs was 49.6 m2/g. NiO nanoparticles synthesized from Lupinus Albus extract by the green synthesis method were used as catalysts in the photocatalytic reduction of methylene blue with NaBH4. In the photocatalytic reduction of methylene blue with NaBH4, it was determined that there was no color change in 48 h without a catalyst, and in the presence of NiO nanoparticle catalyst, methylene blue was reduced by 97% in 8 min. The kinetics of the photocatalytic reduction of methylene blue with NaBH4 is a pseudo-first-order kinetic model and the kinetic rate constant is determined as 0.66 min-1, indicating that the catalytic effect of NiO NPs is very high at this value. NiO NPs were used five times in the photocatalytic reduction of methylene blue with NaBH4 and it was determined that the reduction of methylene blue was over 90% in each use. NiO nanoparticles were synthesized from Lupinus Albus extract by green synthesis, which is an easily applied, cost-effective, and environmentally friendly method. The synthesized NiO nanoparticles were characterized using various characterization techniques. NiO nanoparticles have a high catalytic effect in the photocatalytic reduction of methylene blue with NaBH4. Photocatalytic reduction of methylene blue with uncatalyzed NaBH4 could not be achieved, and 97% reduction of methylene blue was completed in 8 min in the presence of NiO nanoparticle catalyst.
Description
Keywords
Kinetics, methylene blue, nickel oxide, reduction, sodium borohydride, Silver Nanoparticles, Hydrogen Generation, Nio Nanoparticles, Leaf Extract, Metal, Cytotoxicity, Degradation, Hydrolysis, Dye, Co, Methylene Blue, Kinetics, Nickel, Plant Extracts, methylene blue, Metal Nanoparticles, nickel oxide, reduction, Green Chemistry Technology, sodium borohydride, Catalysis, Lupinus
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
N/A
Source
International Journal of Phytoremediation
Volume
26
Issue
Start Page
1970
End Page
1980
PlumX Metrics
Citations
Scopus : 6
Captures
Mendeley Readers : 5
Google Scholar™

OpenAlex FWCI
1.52123389
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

6
CLEAN WATER AND SANITATION

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

14
LIFE BELOW WATER


