Please use this identifier to cite or link to this item:
Title: Prediction of the number of students taking make-up examinations using artificial neural networks
Authors: Kıran, Mustafa Servet
Sıramkaya, Eyüp
Esme, Engin
Şenkaya, Miyase Nur
Keywords: Artificial neural network
Make-up exam
Prediction of number of students
Random weight network
Issue Date: 2021
Abstract: Three different examinations for any course are primarily defined in higher education in Turkey: midterm, final and make-up exams. Whether a student has passed a course is decided by using the scores of midterm and final exams. If this student fails the course as a result of these exams, he can take a make-up exam of this course, and the score of the make-up exam is replaced with the final exam. However, some of the students do not take the make-up exam although it is expected that they take the make-up exam, due to different reasons such as average score, distance, low score of midterm exam, etc. Because the make-up exam plans and schedule have been performed in accordance with the number of students who failed the course, some resources such as the number of classrooms, invigilators, exam papers, toner are wasted. In order to reduce these wastages, we applied artificial neural networks, ANN, trained by different approaches for predicting the number of students taking make-up examinations in this study. In the proposed framework, some features of students and courses have been determined, the data has been collected and ANNs have been trained on these datasets. By using the trained ANNs, each student who fails the course is classified as positive (taking the make-up exam) or negative (not taking the make-up exam). In the experiments, the data of ten different courses are used for training ANNs by random weight network, error back propagation algorithm, some metaheuristic algorithms such as grey wolf optimizer, artificial bee colony, particle swarm optimization, ant colony optimization, etc. The performances of the trained ANNs have been compared with each other by considering training accuracy, testing accuracy, training time. BP achieves the best mean training accuracy on both unnormalized and normalized datasets with 99.36% and 99.7%, respectively. GWO achieves the best mean testing accuracy on both unnormalized and normalized datasets with 80.39% and 82.39%, respectively. Moreover, RWN has the best running time of less than a second for training the ANN on both normalized and unnormalized datasets. The experiments and comparisons show that an ANN-based classifier can be used for determining the number of students taking the make-up exam.
ISSN: 1868-8071
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
  Until 2030-01-01
777.16 kBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender


checked on May 27, 2023


checked on Jan 30, 2023

Page view(s)

checked on May 29, 2023


checked on May 29, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.