Please use this identifier to cite or link to this item:
Title: Experimental evaluation of a hybrid global maximum power tracking algorithm based on modified firefly and perturbation and observation algorithms
Authors: Omar, Fuad Alhaj
Kulaksız, Ahmet Afşin
Keywords: Maximum Power Point Tracking
Firefly Algorithm
Partial Shading Conditions
Global Tracking
Partial Shaded Conditions
Point Tracking
Pv System
Photovoltaic Systems
Mppt Techniques
Issue Date: 2021
Abstract: The classical maximum power point tracking (MPPT) approaches are powerful under uniform irradiance conditions. However, under partial shading conditions, they fail to find the global maximum power point (GMPP) and are trapped in one of the local maximum power points (MPPs), resulting in loss of power. This paper presents an experimental investigation of a novel hybrid MPPT approach for photovoltaic systems working under partial shading conditions (PSCs). In the proposed hybrid approach, the firefly algorithm (FA) is modified and employed for global searching through two loops, and the perturbation and observation (P&O) algorithm is used for local searching through one loop. The model of the proposed algorithm is built in the environments of MATLAB/Simulink and Proteus virtual system modeling (VSM) while the experimental study is conducted using a 32-bit microcontroller. The simulation and experimental results are collected under irregular irradiance conditions and PSCs. The results demonstrate that the proposed algorithm exhibits superior performance in the task of finding and tracking the GMPP, shows high sensitivity in capturing any variation in atmospheric conditions, reduces the convergence time to the GMPP and reduces the steady-state oscillation around the optimal operating point. This finding has important implications for developing photovoltaic generation systems.
ISSN: 0941-0643
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
  Until 2030-01-01
6.2 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender


checked on Mar 18, 2023

Page view(s)

checked on Mar 20, 2023


checked on Mar 20, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.