Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/5737
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYounas, U.-
dc.contributor.authorKulaksiz, A.A.-
dc.contributor.authorAli, Z.-
dc.date.accessioned2024-06-19T14:41:57Z-
dc.date.available2024-06-19T14:41:57Z-
dc.date.issued2024-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2024.3407605-
dc.identifier.urihttps://hdl.handle.net/20.500.13091/5737-
dc.description.abstractRising global energy demand, predominantly satisfied by fossil fuels, triggers fuel price surges, fuel scarcity, and substantial greenhouse gas emissions. Solar photovoltaics (PV), as an abundant renewable alternative, can potentially address this demand, yet low cell efficiency (15-25%) and fluctuating output power due to intermittent irradiance (<italic>G</italic>) and temperature (<italic>T</italic>) impedes grid integration. This paper presents a novel Deep Learning (DL) based stacked LSTM (Long Short-Term Memory) MPPT controller to maximize power harvesting from a 100 kW grid-tied solar PV system, demonstrating superiority over conventional Perturb &#x0026; Observe (P&#x0026;O) and Feed Forward-Deep Neural Network (FF-DNN) MPPT approaches. Subsequently, a Neutral-Point-Clamped (NPC) 3-level inverter with proportional-integral (PI) controllers regulates the DC link voltage and transfers the extracted PV power to the grid. The proposed MPPT methodology includes collection of one million-sample (<italic>G</italic>, <italic>V</italic>, <italic>Vmp</italic>) datasets; preprocessing via z-score normalization; visualizing distributions through histograms and correlation matrix plots; an 80/20 split rule-based training and test sets; a two-hidden layer stacked LSTM (64 and 32 neurons) architecture; hyperparameters including the Adam optimizer, 0.05 learning rate, 32 batch size, and 50 epochs. Model efficacy quantification uses MSE, RMSE, MAE, loss, and R2 metrics. For 100 kW generated PV power, the stacked LSTM extracts 98.2 kW, versus 96.1 kW and 94.3 kW for the DNN and P&#x0026;O MPPTs respectively. By integrating the optimized proposed stack LSTM MPPT with a streamlined inverter topology, the proposed approach advances the state-of-the-art in DL based solar PV energy harvesting optimization and grid integration. Authorsen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaptation modelsen_US
dc.subjectArtificial neural networksen_US
dc.subjectComplexity theoryen_US
dc.subjectComputer architectureen_US
dc.subjectDeep learningen_US
dc.subjectDeep Learningen_US
dc.subjectDeep Neural Networken_US
dc.subjectGrid Integrationen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectLong short term memoryen_US
dc.subjectLong Short-Term Memory Networken_US
dc.subjectMaximum power point trackersen_US
dc.subjectMaximum Power Point Trackingen_US
dc.subjectOptimizationen_US
dc.subjectPhotovoltaic systemsen_US
dc.subjectPower gridsen_US
dc.subjectSolar Photovoltaicen_US
dc.subjectSolar power generationen_US
dc.subjectBrainen_US
dc.subjectControllersen_US
dc.subjectElectric power system controlen_US
dc.subjectEnergy harvestingen_US
dc.subjectFossil fuelsen_US
dc.subjectGas emissionsen_US
dc.subjectGreenhouse gasesen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectLearning algorithmsen_US
dc.subjectLong short-term memoryen_US
dc.subjectMaximum power point trackersen_US
dc.subjectMemory architectureen_US
dc.subjectNetwork architectureen_US
dc.subjectSolar energyen_US
dc.subjectSolar power generationen_US
dc.subjectTime domain analysisen_US
dc.subjectTwo term control systemsen_US
dc.subjectAdaptation modelsen_US
dc.subjectComplexity theoryen_US
dc.subjectDeep learningen_US
dc.subjectGrid integrationen_US
dc.subjectHeuristics algorithmen_US
dc.subjectLong short-term memory networken_US
dc.subjectMaximum Power Point Trackingen_US
dc.subjectMemory networken_US
dc.subjectOptimisationsen_US
dc.subjectPhotovoltaic systemsen_US
dc.subjectPower gridsen_US
dc.subjectSolar photovoltaicsen_US
dc.subjectOptimizationen_US
dc.titleDeep Learning Stack LSTM based MPPT Control of Dual Stage 100 kWp Grid-Tied Solar PV Systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2024.3407605-
dc.identifier.scopus2-s2.0-85194865225en_US
dc.departmentKTÜNen_US
dc.identifier.startpage1en_US
dc.identifier.endpage1en_US
dc.identifier.wosWOS:001249231500001en_US
dc.institutionauthorYounas, U.-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57208936691-
dc.authorscopusid6506541745-
dc.authorscopusid56382729500-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections
Show simple item record



CORE Recommender

Page view(s)

38
checked on Oct 7, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.