Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/5394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞap, E.-
dc.contributor.authorUsca, Ü.A.-
dc.contributor.authorŞap, S.-
dc.contributor.authorPolat, H.-
dc.contributor.authorGiasin, K.-
dc.contributor.authorKalyoncu, M.-
dc.date.accessioned2024-04-20T13:05:06Z-
dc.date.available2024-04-20T13:05:06Z-
dc.date.issued2024-
dc.identifier.issn2352-4928-
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2024.108521-
dc.identifier.urihttps://hdl.handle.net/20.500.13091/5394-
dc.description.abstractIncoloy 800 is frequently used in high-temperature applications as it has the ability to retain good metallurgical stability at elevated temperatures. Due to the nature of the applications used for, parts made from Incoloy 800 usually require different machining processes such as milling and turning. Therefore, the current study aims to investigate the milling performance of Incoloy 800 under different cutting parameters (75–150 m/min and 0.075–0.15 mm/rev) and cooling conditions namely dry, flood, Minimum Quantity Lubrication (MQL) and Cryogenic (Cryo)+MQL. It was observed that all machinability metrics improved in the MQL+Cryo C/L environment. It is noticeable that the surface roughness value improved by 30% in this environment. In addition, a model based on artificial neural networks (ANN) and particle swarm optimization (PSO) was proposed to analyze the results and predict optimum cutting parameters. It appears that Cryo+MQL strategies are the best option for all cutting parameters. It was found that the estimations for surface roughness, flank wear, and cutting temperature with the proposed ANN architecture are achieved with overall relative error of 6.08%, 12.38%, and 8.32%, respectively. The proposed model resulted in good performance between the experimental test data and the predicted values. The developed model made the most efficient predictions for the MQL+Cryo cutting environment. It was observed that the estimations of the different input parameters in the MQL+Cryo cutting environment present a relative error of 8.36%, 1.46%, and 2.38% for surface roughness, flank wear, and cutting temperature, respectively. By utilizing the predictive capability of the trained ANN model, the optimization of the input parameters was carried out with the PSO technique. Thus, with the developed PSO-ANN model, promising findings were obtained in overcoming important handicaps such as time and cost in experimental studies. © 2024 Elsevier Ltden_US
dc.description.sponsorshipBingöl Üniversitesi: BAP-TBMYO.2022.001en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofMaterials Today Communicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenten_US
dc.subjectHybrid coolingen_US
dc.subjectIncoloy 800en_US
dc.subjectLN2en_US
dc.subjectMachiningen_US
dc.subjectMQLen_US
dc.subjectCutting toolsen_US
dc.subjectHigh temperature applicationsen_US
dc.subjectMilling (machining)en_US
dc.subjectNeural networksen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectSuperalloysen_US
dc.subjectTurningen_US
dc.subjectWear of materialsen_US
dc.subjectArtificial intelligenten_US
dc.subjectCutting parametersen_US
dc.subjectCutting temperatureen_US
dc.subjectFlank wearen_US
dc.subjectHybrid coolingen_US
dc.subjectIncoloy 800en_US
dc.subjectLN2en_US
dc.subjectMinimum quantity lubricationen_US
dc.subjectPerformanceen_US
dc.subjectRelative errorsen_US
dc.subjectSurface roughnessen_US
dc.titleUnderstanding the effects of machinability properties of Incoloy 800 superalloy under different machining conditions using artificial intelligence methodsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mtcomm.2024.108521-
dc.identifier.scopus2-s2.0-85186638145en_US
dc.departmentKTÜNen_US
dc.identifier.volume38en_US
dc.identifier.wosWOS:001206356000001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57219916944-
dc.authorscopusid57201300242-
dc.authorscopusid57209496851-
dc.authorscopusid55751699800-
dc.authorscopusid56790003100-
dc.authorscopusid55970457800-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.10. Department of Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

3
checked on Oct 12, 2024

Page view(s)

32
checked on Oct 14, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.