Please use this identifier to cite or link to this item:
Title: Search for a high-mass dimuon resonance produced in association with b quark jets at √s=13 TeV
Authors: Hayrapetyan, A.
Tumasyan, A.
Adam, W.
Andrejkovic, J. W.
Bergauer, T.
Chatterjee, S.
Damanakis, K.
Keywords: Beyond Standard Model
Hadron-Hadron Scattering
Bottom Quarks
Issue Date: 2023
Publisher: Springer
Abstract: A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb(-1) at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z boson couplings to a bb quark pair (g(b)), an sb quark pair (g(b)delta(bs)), and any same-flavor charged lepton (g(l)) or neutrino pair (g(nu)), with |g(nu)| = |g(l)|. For a Z ' boson with a mass mZ ' = 350 GeV (2 TeV) and |delta(bs)| < 0.25, the majority of the parameter space with 0.0057 < |g(l)| < 0.35 (0.25 < |g(l)| < 0.43) and 0.0079 < |g(b)| < 0.46 (0.34 < |g(b)| < 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z ' model with parameters consistent with low-energy b -> sll measurements. In this scenario, most of the allowed parameter space is excluded for a Z ' boson with 350 < mZ ' < 500 GeV, while the constraints are less stringent for higher mZ ' hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.
ISSN: 1029-8479
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Show full item record

CORE Recommender

Page view(s)

checked on Mar 4, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.