Please use this identifier to cite or link to this item:
Title: Electron spin resonance and photoluminescence studies of Co/Mg co-doped ZnO nanoparticles
Authors: Arda, Lütfi
Karatas, Ozgul
Alphan, Mehmet Can
Özugürlü, Ersin
Keywords: defects
photoluminescence properties
sol-gel method
zinc oxide
Issue Date: 2023
Publisher: Wiley
Abstract: Zn0.95-xMg0.05CoxO (x = 0.01-0.05 with an increment of 0.01) nanoparticles were synthesized by using the sol-gel technique to analyze structural and magnetic properties. The single phase was observed in the X-ray diffraction measurements. To examine the surface morphology, elemental compositions, crystal quality, defect type, density, and magnetic behavior of the nanoparticles, SEM, energy dispersive X-ray analysis (EDX), PL, and ESR were used, respectively. The PL has ultraviolet and a broad emission band including violet and a blue spectral region corresponding to the defect-related and excitonic emissions. These emissions were strongly dependent on the synthesize condition and doping element and ratio. The effect of cobalt concentration on the line widths of pike to pike (Delta HPP) and the g-factor of ESR spectra were investigated. By comparing the results of the ESR and PL measurements, it was determined which defect with a given g-factor was responsible for the corresponding PL emission band. In addition, ESR spectra of Mg/Co co-doped ZnO nanoparticles with different cobalt concentrations recorded at room temperature were presented. Since Mg/Co co-doped ZnO nanoparticles reveal ferromagnetism at RT, they could be an appropriate material for new devices in spin-based technologies.
ISSN: 1546-542X
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Show full item record

CORE Recommender

Page view(s)

checked on Mar 4, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.