Please use this identifier to cite or link to this item:
Title: Chaos theory in metaheuristics
Authors: Türkoğlu, B.
Uymaz, S.A.
Kaya, E.
Keywords: Chaos theory
Chaotic maps
Issue Date: 2023
Publisher: Elsevier
Abstract: Metaheuristic optimization is the technique of finding the most suitable solution among the possible solutions for a particular problem. We encounter many problems in the real world, such as timetabling, path planning, packing, traveling salesman, trajectory optimization, and engineering design problems. The two main problems faced by all metaheuristic algorithms are being stuck in local optima and early convergence. To overcome these problems and achieve better performance, chaos theory is included in the metaheuristic optimization. The chaotic maps are employed to balance the exploration and exploitation efficiently and improve the performance of algorithms in terms of both local optima avoidance and convergence speed. The literature shows that chaotic maps can significantly boost the performance of metaheuristic optimization algorithms. In this chapter, chaos theory and chaotic maps are briefly explained. The use of chaotic maps in metaheuristic is presented, and an enhanced version of GSA with chaotic maps is shown as an application. © 2023 Elsevier Inc. All rights reserved.
ISBN: 9780323917810
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections

Show full item record

CORE Recommender


checked on Dec 2, 2023

Page view(s)

checked on Dec 4, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.