Please use this identifier to cite or link to this item:
Title: Analysis of the Electric Vehicle Charging Stations Effects on the Electricity Network with Artificial Neural Network
Authors: Olcay, Kadir
Çetinkaya, Nurettin
Keywords: electric vehicles
EV charging station
IEEE power test system
artificial neural networks (ANN)
EV DC fast charger
effects of chargers
Issue Date: 2023
Publisher: MDPI
Abstract: In this study, the effects of electric vehicles, whose usage rate is increasing day by day in the world, on the existing electricity grid have been studied. EV charging stations and similar non-linear loads cause various harmful effects on power systems such as phase imbalances, the effect of harmonic formation, energy quality, voltage, and current imbalance. The study focuses on the harmonic effects of EV charging stations at the point where they are connected to the grid and at lower voltage levels by using IEEE 6-, 14-bus, and 30-bus test power systems. In addition to the existing loads in these grid systems, the effects on the grid as a result of drawing electrical energy from the grid for charging electric vehicles are investigated. These effects have shown how these charging stations on the grid have changed, considering the fact that the number of electric vehicles and the number of charging stations increased over the years when a single electric vehicle provided energy from the grid, and the grid was not renewed. The response of the network to the increase in the load that will occur in addition to the current loads, its harmonic effects, and the effects of the current grid on the increase in the electric vehicle growth rate over the years have been predicted and examined by using artificial neural networks. Solution suggestions are presented for power networks in similar situations.
ISSN: 1996-1073
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
energies-16-01282.pdf5.48 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Mar 2, 2024

Page view(s)

checked on Mar 4, 2024


checked on Mar 4, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.