Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13091/4335
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Haspulat Taymaz, Bircan | - |
dc.date.accessioned | 2023-08-03T19:00:13Z | - |
dc.date.available | 2023-08-03T19:00:13Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1876-1070 | - |
dc.identifier.issn | 1876-1089 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jtice.2023.104741 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.13091/4335 | - |
dc.description.abstract | Background: Discharging textile industries' wastewater into the surrounding environment without treatment harms mammals and the aquatic environment. Photocatalysts, such as semiconductor nanoparticles, use a renewable light energy source to decompose various dangerous pollutants in wastewater. One of the most often utilized semiconductors is nanostructured ZnO and its photocatalytic activity is restricted to the UV region. Recently, utilizing ternary nanocomposite formed with the combination of the conductive polymer and nano-particles has shown promising performance for improving the visible light absorption capacity. Methods: A novel Co-doped ZnO nanoparticles (ZnO@Co) doped polypyrrole ternary nanocomposite (Ppy/ ZnO@Co) was synthesized via chemical oxidative polymerization for degradation cationic rhodamine B (RdB) and anionic direct yellow 50 (DY) dyes under visible light illumination. Significant findings: The Ppy/ZnO@Co completely degraded RdB and DY dyes after 45 and 70 min, respectively, with 6.2 times increased photocatalytic efficiency matched to ZnO@Co due to the minimum recombination rate of photogenerated charges and efficient charge transmission on the surface of the ternary photocatalyst. The Ppy/ZnO@Co shows excellent photocatalytic recycling performance by maintaining the photocatalytic perfor-mance for up to five cycles with over 97% removal efficiency, suggesting that the Ppy/ZnO@Co is a promising visible-light-incentive photocatalyst candidate for degrading dyes in the textile industries' wastewater. | en_US |
dc.description.sponsorship | Scientific Research Project Fund of Konya Technical University [202016061] | en_US |
dc.description.sponsorship | This work is supported by the Scientific Research Project Fund of Konya Technical University under the project number 202016061. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Journal of The Taiwan Institute of Chemical Engineers | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Conductive polymer | en_US |
dc.subject | Ternary nanocomposite | en_US |
dc.subject | Photocatalysis | en_US |
dc.subject | Wastewater treatment | en_US |
dc.subject | Room-Temperature Ferromagnetism | en_US |
dc.subject | Magnetic-Properties | en_US |
dc.subject | Methylene-Blue | en_US |
dc.subject | Zno | en_US |
dc.subject | Degradation | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Dyes | en_US |
dc.subject | Ftir | en_US |
dc.subject | Uv | en_US |
dc.title | A novel Ppy/ZnO@Co ternary nanocomposite with enhanced visible light-driven photocatalytic performance | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jtice.2023.104741 | - |
dc.identifier.scopus | 2-s2.0-85148323099 | en_US |
dc.department | KTÜN | en_US |
dc.identifier.volume | 144 | en_US |
dc.identifier.wos | WOS:000944333500001 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 02.01. Department of Chemical Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.