Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/4253
Title: A generalization of the equation (2(k)-1) (3(l)-1)=5(m)-1
Authors: Irmak, Nurettin
Keywords: Fibonacci number
exponential diophantine equation
Publisher: Taylor & Francis Ltd
Abstract: Recently, Luca and Szalay solved the equation (2(k) - 1) (3(l )- 1) = 5(m) - 1. Motivated by this equation, we show that the solutions of the equation (F-n(k) -1) (F-n+1(l)-1) = F-n+2 (m)- 1 are (n, k, l, m) = (3, 2, 2, 2) and (5, 2, 1, 2). Here F-n is the n(th) Fibonacci number. To prove this, the main tools are linear forms in logarithm of algebraic numbers and the Lenstra-Lenstra-Lovasz (LLL) lattice basis reduction algorithm.
Description: Article; Early Access
URI: https://doi.org/10.2989/16073606.2023.2178983
https://hdl.handle.net/20.500.13091/4253
ISSN: 1607-3606
1727-933X
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
A generalization of the equation 2k 1 3l 1 5m 1.pdf
  Until 2030-01-01
416.45 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

Page view(s)

54
checked on May 27, 2024

Download(s)

8
checked on May 27, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.