Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/4240
Title: Combined effect of fiber hybridization and matrix modification on mechanical properties of polymer composites
Authors: Demir, Okan
Yar, Adem
Eskizeybek, Volkan
Avci, Ahmet
Keywords: Glass fiber reinforced polymer
carbon fiber reinforced polymer
carbon nanotubes
hybrid effect
low-velocity impact
fiber hybridization
Wind Turbine-Blades
Hybrid Composites
Carbon Nanotubes
Performance
Failure
Glass
Strength
Strain
Gfrp
Publisher: Sage Publications Ltd
Abstract: Glass/carbon fiber reinforced hybrid composites are great candidates for wind turbine blade manufacturers to make larger blades. Variation of stacking sequences ensures design freedom to the composite engineers to optimize the composite structure's mechanical performance. On the other hand, matrix modification of polymer composites with nanoparticles is also of interest to introduce multifunctional properties. This research aims to scrutinize the influence of simultaneous fiber hybridization and matrix modification on polymer composites' tensile, flexural, and low-velocity impact properties. Hybrid glass/carbon epoxy composites and hybrid glass/carbon/multi-walled carbon nanotube (MWCNT) multiscale polymer composites of stacking sequences [GCGCGC](S), [CGCGCG](S), and [G(6)C(6)] were manufactured. Fiber hybridization dramatically improved tensile strength between 51% and 76% compared to glass fiber composite. Depending on the stacking sequence, the flexural strength of the hybrid composites was improved between 10% and 16% concerning carbon fiber composite. With the introduction of MWCNTs, a slight increase in the tensile strength for unsymmetrical hybrid composites by around 5% and decreases by 7% for symmetrical ones were observed. Similar behavior was seen for bending characteristics. Additionally, low-velocity impact tests showed that it is achievable to bring greater impact peak forces up to 70% for hybrid composites than carbon fiber epoxy composites. MWCNTs modification of the matrix restrained the impact damage propagation, as proved by C-scan analysis.
URI: https://doi.org/10.1177/14644207231162547
https://hdl.handle.net/20.500.13091/4240
ISSN: 1464-4207
2041-3076
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Show full item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Mar 23, 2024

Page view(s)

56
checked on Mar 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.