Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/4032
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAsyraf, Muhammad Rizal Muhammad-
dc.contributor.authorRafidah, Mazlan-
dc.contributor.authorMadenci, Emrah-
dc.contributor.authorÖzkılıç, Yasin Onuralp-
dc.contributor.authorAksoylu, Ceyhun-
dc.contributor.authorRazman, Muhammad Rizal-
dc.contributor.authorRamli, Zuliskandar-
dc.date.accessioned2023-05-30T21:09:00Z-
dc.date.available2023-05-30T21:09:00Z-
dc.date.issued2023-
dc.identifier.issn1996-1944-
dc.identifier.urihttps://doi.org/10.3390/ma16041747-
dc.identifier.urihttps://hdl.handle.net/20.500.13091/4032-
dc.description.abstractFibre-reinforced polymer (FRP) composites have been selected as an alternative to conventional wooden timber cross arms. The advantages of FRP composites include a high strength-to-weight ratio, lightweight, ease of production, as well as optimal mechanical performance. Since a non-conductive cross arm structure is exposed to constant loading for a very long time, creep is one of the main factors that cause structural failure. In this state, the structure experiences creep deformation, which can result in serviceability problems, stress redistribution, pre-stress loss, and the failure of structural elements. These issues can be resolved by assessing the creep trends and properties of the structure, which can forecast its serviceability and long-term mechanical performance. Hence, the principles, approaches, and characteristics of creep are used to comprehend and analyse the behaviour of wood and composite cantilever structures under long-term loads. The development of appropriate creep methods and approaches to non-conductive cross arm construction is given particular attention in this literature review, including suitable mitigation strategies such as sleeve installation, the addition of bracing systems, and the inclusion of cross arm beams in the core structure. Thus, this article delivers a state-of-the-art review of creep properties, as well as an analysis of non-conductive cross arm structures using experimental approaches. Additionally, this review highlights future developments and progress in cross arm studies.en_US
dc.description.sponsorshipUniversiti Teknologi Malaysia [PY/2022/03758-Q.J130000.3824.31J25]; Universiti Kebangsaan Malaysia [PP/LESTARI/2023, XX-2021-002]en_US
dc.description.sponsorshipThe financial support was received from the Universiti Teknologi Malaysia through the project Characterizations of Hybrid Kenaf Fibre/Fibreglass Meshes Reinforced Thermoplastic ABS Composites for Future Use in Aircraft Radome Applications, under grant number PY/2022/03758-Q.J130000.3824.31J25. The APC of the review paper was funded by Universiti Kebangsaan Malaysia through research grants, PP/LESTARI/2023 and XX-2021-002.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofMaterialsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcross armsen_US
dc.subjectlatticed transmission toweren_US
dc.subjectcreepen_US
dc.subjectcantilever beamen_US
dc.subjectnumerical modelsen_US
dc.subjectLong-Term Behavioren_US
dc.subjectMechanical-Behavioren_US
dc.subjectConceptual Designen_US
dc.subjectWood Cantileveren_US
dc.subjectTest Rigen_US
dc.subjectCompositeen_US
dc.subjectStressen_US
dc.subjectTrizen_US
dc.subjectTemperatureen_US
dc.subjectModelen_US
dc.titleCreep Properties and Analysis of Cross Arms' Materials and Structures in Latticed Transmission Towers: Current Progress and Future Perspectivesen_US
dc.typeReviewen_US
dc.identifier.doi10.3390/ma16041747-
dc.identifier.pmid36837376en_US
dc.identifier.scopus2-s2.0-85149178760en_US
dc.departmentKTÜNen_US
dc.authoridAsyraf, M. R. M./0000-0001-6471-0528-
dc.authoridÖzkılıç, Yasin Onuralp/0000-0001-9354-4784-
dc.authoridAKSOYLU, Ceyhun/0000-0002-1574-4251-
dc.authoridMadenci, Emrah/0000-0001-8279-9466-
dc.authoridkhan, Tabrej/0000-0002-8619-1340-
dc.authoridRazman, Muhammad Rizal/0000-0002-7864-5832-
dc.authorwosidAsyraf, M. R. M./AAT-8632-2020-
dc.authorwosidÖzkılıç, Yasin Onuralp/AAA-9279-2019-
dc.authorwosidMadenci, Emrah/ABD-1971-2020-
dc.authorwosidAKSOYLU, Ceyhun/AAQ-1447-2020-
dc.identifier.volume16en_US
dc.identifier.issue4en_US
dc.identifier.wosWOS:000940906200001en_US
dc.institutionauthor-
dc.relation.publicationcategoryDiğeren_US
dc.authorscopusid57205295733-
dc.authorscopusid57216634842-
dc.authorscopusid57194583422-
dc.authorscopusid57203961386-
dc.authorscopusid57193686945-
dc.authorscopusid35410239300-
dc.authorscopusid35111682400-
dc.identifier.scopusqualityQ1-
dc.ktun-updatektunupdateen_US
item.openairetypeReview-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
crisitem.author.dept02.02. Department of Civil Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collections
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections
Files in This Item:
File SizeFormat 
materials-16-01747-v3.pdf6.36 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Sep 28, 2024

WEB OF SCIENCETM
Citations

9
checked on Sep 28, 2024

Page view(s)

106
checked on Sep 30, 2024

Download(s)

42
checked on Sep 30, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.