Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13091/378
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çimen, Halil | - |
dc.contributor.author | Palacios-Garcia, Emilio J. | - |
dc.contributor.author | Çetinkaya, Nurettin | - |
dc.contributor.author | Vasquez, Juan C. | - |
dc.contributor.author | Guerrero, Josep M. | - |
dc.date.accessioned | 2021-12-13T10:24:07Z | - |
dc.date.available | 2021-12-13T10:24:07Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 978-1-7281-8259-9 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.13091/378 | - |
dc.description | Zooming Innovation in Consumer Technologies Conference (ZINC) -- MAY 26-27, 2020 -- ELECTR NETWORK | en_US |
dc.description.abstract | Non-intrusive load monitoring (NILM) is the process of obtaining appliance-level data from users' total electricity consumption data. These data can be of great benefit, especially in demand response applications. In this paper, a multi-label classification for NILM based on a two-input gated recurrent unit (GRU) is presented. Since the presented method is designed with a multi-label approach, great savings in training time are achieved. While a separate model is trained for each appliance in the literature, only one model is trained in the proposed model. Besides, the model was trained using two different inputs. The first is the total active power value consumed by the whole house. The second input is the Spikes obtained by analyzing this active power consumption. Simply put, spikes are obtained by analyzing the instant power changes in active power. Both inputs are evaluated with a convolutional layer and necessary features are extracted. Obtained features are fed into the GRU to be able to analyze time-dependent changes. The simulation results show that an additional input can slightly improve the analysis accuracy. Besides, it was found that the second input is useful especially in the analysis of short-term devices. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [BIDEB-2214]; Aalborg University Talent Programme | en_US |
dc.description.sponsorship | This work was supported by The Scientific and Technological Research Council of turkey (TUBITAK) BIDEB-2214 International Doctoral Research Fellowship Programme and Aalborg University Talent Programme. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2020 ZOOMING INNOVATION IN CONSUMER TECHNOLOGIES CONFERENCE (ZINC) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Non-intrusive load monitoring | en_US |
dc.subject | microgrid | en_US |
dc.subject | energy management | en_US |
dc.subject | recurrent neural network | en_US |
dc.subject | deep learning | en_US |
dc.title | A Dual-input Multi-label Classification Approach for Non-Intrusive Load Monitoring via Deep Learning | en_US |
dc.type | Conference Object | en_US |
dc.identifier.scopus | 2-s2.0-85091339170 | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.authorid | Vasquez, Juan C./0000-0001-6332-385X | - |
dc.authorwosid | Vasquez, Juan C./J-2247-2014 | - |
dc.authorwosid | Guerrero, Josep/D-5519-2014 | - |
dc.authorwosid | Palacios-Garcia, Emilio Jose/K-9567-2015 | - |
dc.identifier.startpage | 259 | en_US |
dc.identifier.endpage | 263 | en_US |
dc.identifier.wos | WOS:000621646700055 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.languageiso639-1 | en | - |
item.grantfulltext | embargo_20300101 | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 02.04. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections |
Files in This Item:
File | Size | Format | |
---|---|---|---|
A_Dual-input_Multi-label_Classification_Approach_for_Non-Intrusive_Load_Monitoring_via_Deep_Learning.pdf Until 2030-01-01 | 168.62 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.