Please use this identifier to cite or link to this item:
Title: Efficient decolorization of cationic dye (malachite green) by natural-based biosorbent (nano-magnetic Sophora Japonica fruit seed biochar)
Authors: Bayram, Okan
Köksal, Elif
Moral, Emel
Gode, Fethiye
Pehlivan, Erol
Keywords: Adsorption isotherms
organic dye
water purification
magnetic nanoparticles
Waste-Water Treatment
Adsorption Behavior
Activated Carbon
Issue Date: 2022
Publisher: Taylor & Francis Inc
Abstract: Today, the importance of materials produced by natural means or by synthesis is increasing in the prevention of increasing water pollution. Sophora Japonica fruit seeds (SJfs) were pyrolyzed at 450 degrees C to produce SJfs-biochar (SJfsB) in this study. Iron nanoparticles were immobilized to the SJfsB structure to form a more active biosorbent matrix. SJfsB and the resulting novel biosorbent (nanomagnetic-Sophora Japonica fruit seeds biochar (nM-SJfsB) were used to remove malachite green (MG) from an aqueous solution. Fourier transform infrared analysis (FTIR) and scanning electron microscopy were used to elucidate the details of the biosorbent properties. The effect on removal was investigated using various parameters. A combined strategy was used to define the adsorption parameters such as adsorbent amount, time, initial dye concentration, pH, and temperature. The maximum adsorption capacity determined by the Langmuir model was 51.020 mg/g for SJfsB-MG and 101.010 mg/g was found for nM-SJfsB-MG. The pseudo second order equation made the equilibrium data suitable. After regeneration, nM-SJfsB can be used for re-adsorption studies and reused for multiple cycles in adsorption and desorption applications without discharging nano-iron particles into aqueous medium.
ISSN: 0193-2691
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Show full item record

CORE Recommender

Page view(s)

checked on Mar 20, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.