Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/2430
Title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization
Authors: Aslan, Muhammet Fatih
Sabancı, Kadir
Durdu, Akif
Ünlerşen, Muhammed Fahri
Keywords: Bayesian Optimization
COVID-19 pandemic
Convolutional neural networks
Machine learning
Chest-X-Ray
Publisher: Pergamon-Elsevier Science Ltd
Abstract: The coronavirus outbreak 2019, called COVID-19, which originated in Wuhan, negatively affected the lives of millions of people and many people died from this infection. To prevent the spread of the disease, which is still in effect, various restriction decisions have been taken all over the world. In addition, the number of COVID-19 tests has been increased to quarantine infected people. However, due to the problems encountered in the supply of RTPCR tests and the ease of obtaining Computed Tomography and X-ray images, imaging-based methods have become very popular in the diagnosis of COVID-19. Therefore, studies using these images to classify COVID-19 have increased. This paper presents a classification method for computed tomography chest images in the COVID-19 Radiography Database using features extracted by popular Convolutional Neural Networks (CNN) models (AlexNet, ResNet18, ResNet50, Inceptionv3, Densenet201, Inceptionresnetv2, MobileNetv2, GoogleNet). The determination of hyperparameters of Machine Learning (ML) algorithms by Bayesian optimization, and ANN-based image segmentation are the two main contributions in this study. First of all, lung segmentation is performed automatically from the raw image with Artificial Neural Networks (ANNs). To ensure data diversity, data augmentation is applied to the COVID-19 classes, which are fewer than the other two classes. Then these images are applied as input to five different CNN models. The features extracted from each CNN model are given as input to four different ML algorithms, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naive Bayes (NB), and Decision Tree (DT) for classification. To achieve the most successful classification accuracy, the hyperparameters of each ML algorithm are determined using Bayesian optimization. With the classification made using these hyperparameters, the highest success is obtained as 96.29% with the DenseNet201 model and SVM algorithm. The Sensitivity, Precision, Specificity, MCC, and F1-Score metric values for this structure are 0.9642, 0.9642, 0.9812, 0.9641 and 0.9453, respectively. These results showed that ML methods with the most optimum hyperparameters can produce successful results.
URI: https://doi.org/10.1016/j.compbiomed.2022.105244
https://hdl.handle.net/20.500.13091/2430
ISSN: 0010-4825
1879-0534
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collections
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
1-s2.0-S0010482522000361-main (1).pdf4.56 MBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Mar 23, 2024

WEB OF SCIENCETM
Citations

58
checked on Mar 23, 2024

Page view(s)

254
checked on Mar 25, 2024

Download(s)

114
checked on Mar 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.