Please use this identifier to cite or link to this item:
Title: Clustering analysis through artificial algae algorithm
Authors: Türkoğlu, Bahaeddin
Uymaz, Sait Ali
Kaya, Ersin
Keywords: Data clustering
Clustering analysis
Artificial algae algorithm
Optimization Algorithm
Swarm Optimization
Firefly Algorithm
Issue Date: 2022
Publisher: Springer Heidelberg
Abstract: Clustering analysis is widely used in many areas such as document grouping, image recognition, web search, business intelligence, bio information, and medicine. Many algorithms with different clustering approaches have been proposed in the literature. As they are easy and straightforward, partitioning methods such as K-means and K-medoids are the most commonly used algorithms. These are greedy methods that gradually improve clustering quality, highly dependent on initial parameters, and stuck a local optima. For this reason, in recent years, heuristic optimization methods have also been used in clustering. These heuristic methods can provide successful results because they have some mechanism to escape local optimums. In this study, for the first time, Artificial Algae Algorithm was used for clustering and compared with ten well-known bio-inspired metaheuristic clustering approaches. The proposed AAA clustering efficiency is evaluated using statistical analysis, convergence rate analysis, Wilcoxon's test, and different cluster evaluating measures ranking on 25 well-known public datasets with different difficulty levels (features and instances). The results demonstrate that the AAA clustering method provides more accurate solutions with a high convergence rate than other existing heuristic clustering techniques.
ISSN: 1868-8071
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
  Until 2030-01-01
4.37 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender


checked on Mar 25, 2023


checked on Jan 30, 2023

Page view(s)

checked on Mar 27, 2023


checked on Mar 27, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.