Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13091/1696
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Efe, Enes | - |
dc.contributor.author | Özsen, Seral | - |
dc.date.accessioned | 2022-01-30T17:32:54Z | - |
dc.date.available | 2022-01-30T17:32:54Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0765-0019 | - |
dc.identifier.issn | 1958-5608 | - |
dc.identifier.uri | https://doi.org/10.18280/ts.380517 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.13091/1696 | - |
dc.description.abstract | Sleep staging aims to gather biological signals during sleep, and categorize them by sleep stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). These stages are distributed irregularly, and their number varies with sleep quality. These features adversely affect the performance of automatic sleep staging systems. This paper adopts Siamese neural networks (SNNs) to solve the problem. During the network design, seven distance measurement methods, namely, Euclidean, Manhattan, Jaccard, Cosine, Canberra, Bray-Curtis, and Kullback Leibler divergence (KLD), were compared, revealing that Bray-Curtis (83.52%) and Cosine (84.94%) methods boast the best classification performance. The results of our approach are promising compared to traditional methods. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Int Information & Engineering Technology Assoc | en_US |
dc.relation.ispartof | Traitement Du Signal | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Electroencephalogram (Eeg) | en_US |
dc.subject | Siamese Neural Networks (Snns) | en_US |
dc.subject | Automatic Sleep Staging | en_US |
dc.subject | Convolutional Neural Networks (Cnns) | en_US |
dc.subject | Classification | en_US |
dc.subject | Data Augmentation | en_US |
dc.subject | Wavelet Transform | en_US |
dc.subject | Fault-Diagnosis | en_US |
dc.subject | Eeg Signals | en_US |
dc.subject | Channel | en_US |
dc.subject | System | en_US |
dc.subject | Identification | en_US |
dc.title | A New Approach for Automatic Sleep Staging: Siamese Neural Networks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.18280/ts.380517 | - |
dc.identifier.scopus | 2-s2.0-85120484144 | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 38 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 1423 | en_US |
dc.identifier.endpage | 1430 | en_US |
dc.identifier.wos | WOS:000725271300017 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 57360455800 | - |
dc.authorscopusid | 22986589400 | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
crisitem.author.dept | 02.04. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections |
Files in This Item:
File | Size | Format | |
---|---|---|---|
38.05_17.pdf | 1.41 MB | Adobe PDF | View/Open |
CORE Recommender
WEB OF SCIENCETM
Citations
1
checked on Jan 30, 2023
Page view(s)
280
checked on May 22, 2023
Download(s)
118
checked on May 22, 2023
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.