Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13091/1691
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKıran, Mustafa Servet-
dc.contributor.authorSıramkaya, Eyup-
dc.contributor.authorEsme, Engin-
dc.date.accessioned2022-01-30T17:32:54Z-
dc.date.available2022-01-30T17:32:54Z-
dc.date.issued2022-
dc.identifier.issn1300-1884-
dc.identifier.issn1304-4915-
dc.identifier.urihttps://doi.org/10.17341/gazimmfd.890180-
dc.identifier.urihttps://hdl.handle.net/20.500.13091/1691-
dc.description.abstractPurpose: The main objective of this study is to present a novel problem, and novel methodology to solve this problem. The problem is to predict the number of students who fail the course and will join the make-up exams. Theory and Methods: The number of students who fail the course should take a make-up exam, but some of them do not join these exams due to internal or external motivations, and this causes waste of resources. Majority of voting-based extreme learning machines have been proposed to solve the problem, and the ELM parameters have been optimized by artificial bee colony algorithm. Results: The proposed approach shows better performance than the extreme learning machines in terms of classification accuracy. Conclusion: Before the scheduling make-up exams, the number of students who will join the exams should be predicted by the proposed or similar approaches in order to use resources efficiently.en_US
dc.language.isoenen_US
dc.publisherGazi Univ, Fac Engineering Architectureen_US
dc.relation.ispartofJournal Of The Faculty Of Engineering And Architecture Of Gazi Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExtreme Learning Machineen_US
dc.subjectMultiple Extreme Learning Machineen_US
dc.subjectArtificial Bee Colonyen_US
dc.subjectMake-Up Examen_US
dc.subjectExtreme Learning-Machineen_US
dc.titleA k-ELM approach to the prediction of number of students taking make-up examsen_US
dc.title.alternativeBütünleme sınavına girecek öğrenci sayısının tahmini için k-ELM yaklaşımıen_US
dc.typeArticleen_US
dc.identifier.doi10.17341/gazimmfd.890180-
dc.identifier.scopus2-s2.0-85119937060en_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume37en_US
dc.identifier.issue1en_US
dc.identifier.startpage295en_US
dc.identifier.endpage304en_US
dc.identifier.wosWOS:000718898200014en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid54403096500-
dc.authorscopusid55873033200-
dc.authorscopusid57189468408-
dc.identifier.trdizinid1064167en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.dept02.03. Department of Computer Engineering-
crisitem.author.dept02.13. Department of Software Engineering-
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections
Files in This Item:
File SizeFormat 
10.17341-gazimmfd.890180-1614479.pdf388.15 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

360
checked on May 20, 2024

Download(s)

154
checked on May 20, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.