Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13091/154
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aslan, Muhammet Fatih | - |
dc.contributor.author | Durdu, Akif | - |
dc.contributor.author | Sabancı, Kadir | - |
dc.date.accessioned | 2021-12-13T10:19:52Z | - |
dc.date.available | 2021-12-13T10:19:52Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0941-0643 | - |
dc.identifier.issn | 1433-3058 | - |
dc.identifier.uri | https://doi.org/10.1007/s00521-019-04365-9 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.13091/154 | - |
dc.description.abstract | Human activity recognition (HAR) has quite a wide range of applications. Due to its widespread use, new studies have been developed to improve the HAR performance. In this study, HAR is carried out using the commonly preferred KTH and Weizmann dataset, as well as a dataset which we created. Speeded up robust features (SURF) are used to extract features from these datasets. These features are reinforced with bag of visual words (BoVW). Different from the studies in the literature that use similar methods, SURF descriptors are extracted from binary images as well as grayscale images. Moreover, four different machine learning (ML) methods such as k-nearest neighbors, decision tree, support vector machine and naive Bayes are used for classification of BoVW features. Hyperparameter optimization is used to set the hyperparameters of these ML methods. As a result, ML methods are compared with each other through a comparison with the activity recognition performances of binary and grayscale image features. The results show that if the contrast of the environment decreases when a human enters the frame, the SURF of the binary image are more effective than the SURF of the gray image for HAR. | en_US |
dc.language.iso | en | en_US |
dc.publisher | SPRINGER LONDON LTD | en_US |
dc.relation.ispartof | NEURAL COMPUTING & APPLICATIONS | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Human Activity Recognition | en_US |
dc.subject | Image Processing | en_US |
dc.subject | Speeded Up Robust Features | en_US |
dc.subject | Bag Of Visual Words | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | K-Nearest Neighbors | en_US |
dc.subject | Decision Tree | en_US |
dc.subject | Support Vector Machine | en_US |
dc.subject | Naive Bayes | en_US |
dc.subject | Hyperparameter Optimization | en_US |
dc.subject | Recognizing Human Actions | en_US |
dc.subject | Robust Approach | en_US |
dc.subject | Context | en_US |
dc.subject | System | en_US |
dc.subject | Image | en_US |
dc.title | Human action recognition with bag of visual words using different machine learning methods and hyperparameter optimization | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00521-019-04365-9 | - |
dc.identifier.scopus | 2-s2.0-85069803484 | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.authorid | SABANCI, Kadir/0000-0003-0238-9606 | - |
dc.authorwosid | SABANCI, Kadir/AAK-5215-2021 | - |
dc.authorwosid | Durdu, Akif/AAQ-4344-2020 | - |
dc.authorwosid | Aslan, Muhammet Fatih/V-8019-2017 | - |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.startpage | 8585 | en_US |
dc.identifier.endpage | 8597 | en_US |
dc.identifier.wos | WOS:000540259800061 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 57205362915 | - |
dc.authorscopusid | 55364612200 | - |
dc.authorscopusid | 56394515400 | - |
dc.identifier.scopusquality | Q3 | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 02.04. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Aslan2020_Article_HumanActionRecognitionWithBagO.pdf | 2.25 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
25
checked on May 27, 2023
WEB OF SCIENCETM
Citations
21
checked on Jan 30, 2023
Page view(s)
184
checked on May 29, 2023
Download(s)
126
checked on May 29, 2023
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.