Please use this identifier to cite or link to this item:
Title: Automatic Detection of Power Quality Disturbance Using Convolutional Neural Network Structure with Gated Recurrent Unit
Authors: Yiğit, E.
Özkaya, U.
Öztürk, Ş.
Singh, D.
Gritli, H.
Issue Date: 2021
Publisher: Hindawi Limited
Abstract: Power quality disturbance (PQD) is essential for devices consuming electricity and meeting today's energy trends. This study contains an effective artificial intelligence (AI) framework for analyzing single or composite defects in power quality. A convolutional neural network (CNN) architecture, which has an output powered by a gated recurrent unit (GRU), is designed for this purpose. The proposed framework first obtains a matrix using a short-time Fourier transform (STFT) of PQD signals. This matrix contains the representation of the signal in the time and frequency domains, suitable for CNN input. Features are automatically extracted from these matrices using the proposed CNN architecture without preprocessing. These features are classified using the GRU. The performance of the proposed framework is tested using a dataset containing a total of seven single and composite defects. The amount of noise in these examples varies between 20 and 50 dB. The performance of the proposed method is higher than current state-of-the-art methods. The proposed method obtained 98.44% ACC, 98.45% SEN, 99.74% SPE, 98.45% PRE, 98.45% F1-score, 98.19% MCC, and 93.64% kappa metric. A novel power quality disturbance (PQD) system has been proposed, and its application has been represented in our study. The proposed system could be used in the industry and factory. © 2021 Enes Yi?it et al.
ISSN: 1574017X
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collections
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collections

Files in This Item:
File SizeFormat 
7917500.pdf4.61 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Sep 16, 2023

Page view(s)

checked on Sep 25, 2023


checked on Sep 25, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.