Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13091/151
Title: | Comparison of Contourlet and Time-Invariant Contourlet Transform Performance for Different Types of Noises and Images | Authors: | Aslan, Muhammet Fatih Sabancı, Kadir Durdu, Akif |
Keywords: | Bilgisayar Bilimleri, Yapay Zeka Bilgisayar Bilimleri, Sibernitik Bilgisayar Bilimleri, Donanım ve Mimari Bilgisayar Bilimleri, Bilgi Sistemleri Bilgisayar Bilimleri, Yazılım Mühendisliği Bilgisayar Bilimleri, Teori ve Metotlar Mühendislik, Biyotıp Mühendislik, Elektrik ve Elektronik Yeşil, Sürdürülebilir Bilim ve Teknoloji Telekomünikasyon |
Issue Date: | 2019 | Abstract: | A noiseless image is desirable for many applications. However, this is not possible. Generally, wavelet-based methods are used to noise reduction. However, due to insufficient performance of wavelet transforms (WT) on images, different multi-resolution analysis methods have been proposed. In this study, one of them is Contourlet Transform (CT) and the Translation-Invariant Contourlet Transform (TICT) which is an improved version of CT is compared using different noises. The fundus images are taken from the DRIVE dataset and benchmark images are used. Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Mean Structural Similarity (MSSIM) and Feature Similarity Index (FSIM) are used as comparison criteria. The results showed that TICT is better in Gaussian noisy images. | URI: | https://doi.org/10.17694/bajece.573583 https://app.trdizin.gov.tr/makale/TXpFNE5EYzRPQT09 https://hdl.handle.net/20.500.13091/151 |
ISSN: | 2147-284X |
Appears in Collections: | Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collections |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1a30375e-484e-427a-99e4-f511c135e232.pdf | 1.08 MB | Adobe PDF | View/Open |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.