Please use this identifier to cite or link to this item:
Title: Comparison of Contourlet and Time-Invariant Contourlet Transform Performance for Different Types of Noises and Images
Authors: Aslan, Muhammet Fatih
Sabancı, Kadir
Durdu, Akif
Keywords: Bilgisayar Bilimleri, Yapay Zeka
Bilgisayar Bilimleri, Sibernitik
Bilgisayar Bilimleri, Donanım ve Mimari
Bilgisayar Bilimleri, Bilgi Sistemleri
Bilgisayar Bilimleri, Yazılım Mühendisliği
Bilgisayar Bilimleri, Teori ve Metotlar
Mühendislik, Biyotıp
Mühendislik, Elektrik ve Elektronik
Yeşil, Sürdürülebilir Bilim ve Teknoloji
Issue Date: 2019
Abstract: A noiseless image is desirable for many applications. However, this is not possible. Generally, wavelet-based methods are used to noise reduction. However, due to insufficient performance of wavelet transforms (WT) on images, different multi-resolution analysis methods have been proposed. In this study, one of them is Contourlet Transform (CT) and the Translation-Invariant Contourlet Transform (TICT) which is an improved version of CT is compared using different noises. The fundus images are taken from the DRIVE dataset and benchmark images are used. Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Mean Structural Similarity (MSSIM) and Feature Similarity Index (FSIM) are used as comparison criteria. The results showed that TICT is better in Gaussian noisy images.
ISSN: 2147-284X
Appears in Collections:Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collections

Files in This Item:
File SizeFormat 
1a30375e-484e-427a-99e4-f511c135e232.pdf1.08 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.