Integration Search Strategies in Tree Seed Algorithm for High Dimensional Function Optimization

dc.contributor.author Güngör, İmral
dc.contributor.author Emiroğlu, Bülent Gürsel
dc.contributor.author Çınar, Ahmet Cevahir
dc.contributor.author Kıran, Mustafa Servet
dc.date.accessioned 2021-12-13T10:29:47Z
dc.date.available 2021-12-13T10:29:47Z
dc.date.issued 2020
dc.description.abstract The tree-seed algorithm, TSA for short, is a new population-based intelligent optimization algorithm developed for solving continuous optimization problems by inspiring the relationship between trees and their seeds. The locations of trees and seeds correspond to the possible solutions of the optimization problem on the search space. By using this model, the continuous optimization problems with lower dimensions are solved effectively, but its performance dramatically decreases on solving higher dimensional optimization problems. In order to address this issue in the basic TSA, an integration of different solution update rules are proposed in this study for solving high dimensional continuous optimization problems. Based on the search tendency parameter, which is a peculiar control parameter of TSA, five update rules and a withering process are utilized for obtaining seeds for the trees. The performance of the proposed method is investigated on basic 30-dimensional twelve numerical benchmark functions and CEC (congress on evolutionary computation) 2015 test suite. The performance of the proposed approach is also compared with the artificial bee colony algorithm, particle swarm optimization algorithm, genetic algorithm, pure random search algorithm and differential evolution variants. Experimental comparisons show that the proposed method is better than the basic method in terms of solution quality, robustness and convergence characteristics. en_US
dc.identifier.doi 10.1007/s13042-019-00970-1
dc.identifier.issn 1868-8071
dc.identifier.issn 1868-808X
dc.identifier.scopus 2-s2.0-85067815829
dc.identifier.uri https://doi.org/10.1007/s13042-019-00970-1
dc.identifier.uri https://hdl.handle.net/20.500.13091/667
dc.language.iso en en_US
dc.publisher SPRINGER HEIDELBERG en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Swarm Intelligence en_US
dc.subject Metaheuristic Algorithms en_US
dc.subject Withering Process en_US
dc.subject Nonlinear Global Optimization en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Differential Evolution en_US
dc.subject Design en_US
dc.title Integration Search Strategies in Tree Seed Algorithm for High Dimensional Function Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id CINAR, Ahmet Cevahir/0000-0001-5596-6767
gdc.author.scopusid 57209450614
gdc.author.scopusid 37057423500
gdc.author.scopusid 57207596277
gdc.author.scopusid 54403096500
gdc.author.wosid CINAR, Ahmet Cevahir/M-1353-2019
gdc.author.wosid Gungor, Imral/AAH-5156-2020
gdc.author.wosid Kiran, Mustafa Servet/AAF-9793-2019
gdc.author.wosid Emiroglu, Bulent Gursel/X-9911-2019
gdc.author.wosid Emiroglu, Bulent Gursel/ABI-3788-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 267 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 249 en_US
gdc.description.volume 11 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2949551411
gdc.identifier.wos WOS:000512019400002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 20.0
gdc.oaire.influence 3.95813E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Nonlinear global optimization
gdc.oaire.keywords Swarm intelligence
gdc.oaire.keywords Metaheuristic algorithms
gdc.oaire.keywords Withering process
gdc.oaire.popularity 2.0117525E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 30
gdc.openalex.collaboration National
gdc.openalex.fwci 3.68682589
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 26
gdc.plumx.crossrefcites 23
gdc.plumx.facebookshareslikecount 74
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 29
gdc.scopus.citedcount 28
gdc.virtual.author Kıran, Mustafa Servet
gdc.wos.citedcount 20
relation.isAuthorOfPublication 1b4c0009-61df-4135-a8d5-ed32324e2787
relation.isAuthorOfPublication.latestForDiscovery 1b4c0009-61df-4135-a8d5-ed32324e2787

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s13042-019-00970-1.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format