Machining Performance Analysis and Optimization in the Milling of Mold Steel under MQL with Nanofluid

dc.contributor.author Aydın, M.
dc.contributor.author Günay, Y.
dc.contributor.author Yapan, Y.F.
dc.contributor.author Livatyali, H.
dc.contributor.author Uysal, A.
dc.date.accessioned 2026-01-10T16:41:48Z
dc.date.available 2026-01-10T16:41:48Z
dc.date.issued 2025
dc.description.abstract The presented study investigates the milling performance of DIN-1.2738 steel under various cutting speeds, feeds, dry, minimum quantity lubrication (MQL) and nanographene-reinforced nanofluid-assisted MQL (N-MQL) cutting conditions. The results of cutting temperature, cutting force, feed force and surface roughness were obtained using a full-factorial experimental design. Under the N-MQL cutting conditions, the cutting temperature, cutting force, feed force and surface roughness improved by 30.1%, 22.3%, 26.3% and 40.2%, respectively. The most effective parameters for cutting temperature, feed force and surface roughness turned out to be the cooling conditions, with 81.6%, 41.7% and 72% contribution ratios, respectively. Also, feed had the strongest effect on cutting force, with a 44.7% contribution ratio. Using different weight ratios, the Gray Wolf algorithm optimized the milling parameters and cooling conditions for output parameters. The optimization process used five scenarios, weight-prioritizing each output parameter and incorporating the entropy method. The optimum cutting condition and feed were 1% Graphene N-MQL and 0.04 mm/rev across all scenarios. The optimal cutting speeds varied based on different priorities. © 2025 Taylor & Francis Group, LLC. en_US
dc.identifier.doi 10.1080/10910344.2025.2582201
dc.identifier.issn 1091-0344
dc.identifier.issn 1532-2483
dc.identifier.scopus 2-s2.0-105023861795
dc.identifier.uri https://doi.org/10.1080/10910344.2025.2582201
dc.identifier.uri https://hdl.handle.net/123456789/12901
dc.language.iso en en_US
dc.publisher Taylor and Francis Ltd. en_US
dc.relation.ispartof Machining Science and Technology en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Graphene Nanofluid en_US
dc.subject Gray Wolf Algorithm en_US
dc.subject Minimum Quantity Lubrication en_US
dc.subject Optimization en_US
dc.subject Plastic Mold Steel en_US
dc.title Machining Performance Analysis and Optimization in the Milling of Mold Steel under MQL with Nanofluid en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57673805600
gdc.author.scopusid 59657033400
gdc.author.scopusid 57934672900
gdc.author.scopusid 6602448693
gdc.author.scopusid 15838185400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Aydın] Mevlüt, Department of Mechanical Engineering, Konya Technical University, Konya, Konya, Turkey; [Günay] Yusuf, Department of Mechanical Engineering, Yıldız Teknik Üniversitesi, Istanbul, Turkey; [Yapan] Yusuf Furkan, Department of Mechanical Engineering, Yıldız Teknik Üniversitesi, Istanbul, Turkey; [Livatyali] Haydar, Department of Mechanical Engineering, Yıldız Teknik Üniversitesi, Istanbul, Turkey; [Uysal] Alper, Department of Mechanical Engineering, Yıldız Teknik Üniversitesi, Istanbul, Turkey en_US
gdc.description.endpage 25
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1
gdc.description.wosquality Q2
gdc.identifier.openalex W4416911731
gdc.index.type Scopus
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.popularity 2.7494755E-9
gdc.openalex.collaboration National
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0

Files