The Classification of Eye Diseases From Fundus Images Based on Cnn and Pretrained Models

dc.contributor.author Benbakreti, S.
dc.contributor.author Benbakreti, S.
dc.contributor.author Ozkaya, U.
dc.date.accessioned 2024-04-20T13:05:03Z
dc.date.available 2024-04-20T13:05:03Z
dc.date.issued 2024
dc.description.abstract Visual impairment affects more than a billion people worldwide due to insufficient care or inadequate vision screening. Computer-aided diagnosis using deep neural networks is a promising approach, it can analyse and process retinal fundus images, providing valuable reference data for doctors in clinical diagnosis or screening. This study aims to achieve an accurate classification of fundus images, including images of healthy patients as well as those with diabetic retinopathy, cataracts, and glaucoma, using a convolutional neural network (CNN) architecture and several pretrained models (AlexNet, GoogleNet, ResNet18, ResNet50, YOLOv3, and VGG 19). To enhance the training process, a mirror effect technique was applied to augment the volume of data. The experimental study resulted in very satisfactory outcomes, with the GoogleNet model paired with the SGDM optimiser achieving the highest accuracy (92.7 %). © 2024 The Author(s). en_US
dc.identifier.doi 10.14311/AP.2024.64.0001
dc.identifier.issn 1805-2363
dc.identifier.scopus 2-s2.0-105004362352
dc.identifier.uri https://doi.org/10.14311/AP.2024.64.0001
dc.language.iso en en_US
dc.publisher Czech Technical University in Prague en_US
dc.relation.ispartof Acta Polytechnica en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep Learning en_US
dc.subject Eye Diseases Classification en_US
dc.subject Pretrained Models en_US
dc.subject Retinal Fundus Images en_US
dc.subject Sgdm en_US
dc.title The Classification of Eye Diseases From Fundus Images Based on Cnn and Pretrained Models en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 55496699300
gdc.author.scopusid 55308093500
gdc.author.scopusid 57191610477
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Benbakreti S.] National High School of Telecommunications and ICT (ENSTTIC), Department of specialty, Oran, 31 000, Algeria; [Benbakreti S.] University of Djillali Liabes, Laboratory of Mathematic, BP 89, Sidi Bel Abbes, 22000, Algeria; [Ozkaya U.] Konya Technical University, Engineering and Natural Science Faculty, Electrical and Electronics Engineering, Konya, Turkey en_US
gdc.description.endpage 11 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1 en_US
gdc.description.volume 64 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q4
gdc.identifier.openalex W4392817610
gdc.identifier.wos WOS:001181467000002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal true
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6757527E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Radiology, Nuclear Medicine and Imaging
gdc.oaire.keywords Artificial intelligence
gdc.oaire.keywords Image Processing
gdc.oaire.keywords Fundus (uterus)
gdc.oaire.keywords Classification of Brain Tumor Type and Grade
gdc.oaire.keywords Image Analysis
gdc.oaire.keywords Image Segmentation
gdc.oaire.keywords Pattern recognition (psychology)
gdc.oaire.keywords Detection and Management of Retinal Diseases
gdc.oaire.keywords Automated Analysis of Blood Cell Images
gdc.oaire.keywords Health Sciences
gdc.oaire.keywords Automated Diagnosis
gdc.oaire.keywords SGDM
gdc.oaire.keywords retinal fundus images
gdc.oaire.keywords deep learning
gdc.oaire.keywords Life Sciences
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords Computer science
gdc.oaire.keywords eye diseases classification
gdc.oaire.keywords pretrained models
gdc.oaire.keywords Ophthalmology
gdc.oaire.keywords Neurology
gdc.oaire.keywords Computer Science
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Medical Image Analysis
gdc.oaire.keywords Medicine
gdc.oaire.keywords Computer Vision and Pattern Recognition
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Neuroscience
gdc.oaire.keywords Optometry
gdc.oaire.popularity 3.2844785E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 5.73351673
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.virtual.author Özkaya, Umut
gdc.wos.citedcount 4
relation.isAuthorOfPublication 04ccc400-06d6-4438-9f17-97fdca915bf4
relation.isAuthorOfPublication.latestForDiscovery 04ccc400-06d6-4438-9f17-97fdca915bf4

Files