The Classification of Eye Diseases From Fundus Images Based on Cnn and Pretrained Models
| dc.contributor.author | Benbakreti, S. | |
| dc.contributor.author | Benbakreti, S. | |
| dc.contributor.author | Ozkaya, U. | |
| dc.date.accessioned | 2024-04-20T13:05:03Z | |
| dc.date.available | 2024-04-20T13:05:03Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Visual impairment affects more than a billion people worldwide due to insufficient care or inadequate vision screening. Computer-aided diagnosis using deep neural networks is a promising approach, it can analyse and process retinal fundus images, providing valuable reference data for doctors in clinical diagnosis or screening. This study aims to achieve an accurate classification of fundus images, including images of healthy patients as well as those with diabetic retinopathy, cataracts, and glaucoma, using a convolutional neural network (CNN) architecture and several pretrained models (AlexNet, GoogleNet, ResNet18, ResNet50, YOLOv3, and VGG 19). To enhance the training process, a mirror effect technique was applied to augment the volume of data. The experimental study resulted in very satisfactory outcomes, with the GoogleNet model paired with the SGDM optimiser achieving the highest accuracy (92.7 %). © 2024 The Author(s). | en_US |
| dc.identifier.doi | 10.14311/AP.2024.64.0001 | |
| dc.identifier.issn | 1805-2363 | |
| dc.identifier.scopus | 2-s2.0-105004362352 | |
| dc.identifier.uri | https://doi.org/10.14311/AP.2024.64.0001 | |
| dc.language.iso | en | en_US |
| dc.publisher | Czech Technical University in Prague | en_US |
| dc.relation.ispartof | Acta Polytechnica | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Eye Diseases Classification | en_US |
| dc.subject | Pretrained Models | en_US |
| dc.subject | Retinal Fundus Images | en_US |
| dc.subject | Sgdm | en_US |
| dc.title | The Classification of Eye Diseases From Fundus Images Based on Cnn and Pretrained Models | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 55496699300 | |
| gdc.author.scopusid | 55308093500 | |
| gdc.author.scopusid | 57191610477 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Konya Technical University | en_US |
| gdc.description.departmenttemp | [Benbakreti S.] National High School of Telecommunications and ICT (ENSTTIC), Department of specialty, Oran, 31 000, Algeria; [Benbakreti S.] University of Djillali Liabes, Laboratory of Mathematic, BP 89, Sidi Bel Abbes, 22000, Algeria; [Ozkaya U.] Konya Technical University, Engineering and Natural Science Faculty, Electrical and Electronics Engineering, Konya, Turkey | en_US |
| gdc.description.endpage | 11 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 1 | en_US |
| gdc.description.volume | 64 | en_US |
| gdc.description.woscitationindex | Emerging Sources Citation Index | |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W4392817610 | |
| gdc.identifier.wos | WOS:001181467000002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | true | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.6757527E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Radiology, Nuclear Medicine and Imaging | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Image Processing | |
| gdc.oaire.keywords | Fundus (uterus) | |
| gdc.oaire.keywords | Classification of Brain Tumor Type and Grade | |
| gdc.oaire.keywords | Image Analysis | |
| gdc.oaire.keywords | Image Segmentation | |
| gdc.oaire.keywords | Pattern recognition (psychology) | |
| gdc.oaire.keywords | Detection and Management of Retinal Diseases | |
| gdc.oaire.keywords | Automated Analysis of Blood Cell Images | |
| gdc.oaire.keywords | Health Sciences | |
| gdc.oaire.keywords | Automated Diagnosis | |
| gdc.oaire.keywords | SGDM | |
| gdc.oaire.keywords | retinal fundus images | |
| gdc.oaire.keywords | deep learning | |
| gdc.oaire.keywords | Life Sciences | |
| gdc.oaire.keywords | Engineering (General). Civil engineering (General) | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | eye diseases classification | |
| gdc.oaire.keywords | pretrained models | |
| gdc.oaire.keywords | Ophthalmology | |
| gdc.oaire.keywords | Neurology | |
| gdc.oaire.keywords | Computer Science | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Medical Image Analysis | |
| gdc.oaire.keywords | Medicine | |
| gdc.oaire.keywords | Computer Vision and Pattern Recognition | |
| gdc.oaire.keywords | TA1-2040 | |
| gdc.oaire.keywords | Neuroscience | |
| gdc.oaire.keywords | Optometry | |
| gdc.oaire.popularity | 3.2844785E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 5.73351673 | |
| gdc.openalex.normalizedpercentile | 0.93 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 7 | |
| gdc.plumx.scopuscites | 5 | |
| gdc.scopus.citedcount | 5 | |
| gdc.virtual.author | Özkaya, Umut | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | 04ccc400-06d6-4438-9f17-97fdca915bf4 | |
| relation.isAuthorOfPublication.latestForDiscovery | 04ccc400-06d6-4438-9f17-97fdca915bf4 |
