Discrete Artificial Algae Algorithm for Solving Job-Shop Scheduling Problems

dc.contributor.author Şahman, Mehmet Akif
dc.contributor.author Korkmaz, Sedat
dc.date.accessioned 2022-11-28T16:54:41Z
dc.date.available 2022-11-28T16:54:41Z
dc.date.issued 2022
dc.description.abstract The Job-Shop Scheduling Problem (JSSP) is an NP-hard problem and can be solved with both exact methods and heuristic algorithms. When the dimensionality is increased, exact methods cannot produce proper solutions, but heuristic algorithms can produce optimal or near-optimal results for high-dimensional JSSPs in a reasonable time. In this work, novel versions of the Artificial Algae Algorithm (AAA) have been proposed to solve discrete optimization problems. Three encoding schemes (Random-Key (RK), Smallest Position Value (SPV), and Ranked-Over Value (ROV) Encoding Schemes) were integrated with AAA to solve JSSPs. In addition, the comparison of these three encoding schemes was carried out for the first time in this study. In the experiments, 48 JSSP problems that have 36 to 300 dimensions were solved with 24 different approaches obtained by integrating 3 different coding schemes into 8 state-of-the-art algorithms. As a result of the comparative and detailed analysis, the best results in terms of makespan value were obtained by integrating the SPV coding scheme into the AAA method. © 2022 Elsevier B.V. en_US
dc.description.sponsorship Konya Teknik Üniversitesi, KTÜN; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK en_US
dc.description.sponsorship The authors wish to thank the Scientific Research Projects Coordinatorship at Selçuk University, Scientific Research Projects Coordinatorship at Konya Technical University, and The Scientific and Technological Research Council of Turkey for their institutional supports. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. en_US
dc.identifier.doi 10.1016/j.knosys.2022.109711
dc.identifier.issn 0950-7051
dc.identifier.scopus 2-s2.0-85138817956
dc.identifier.uri https://doi.org/10.1016/j.knosys.2022.109711
dc.identifier.uri https://doi.org/10.1016/j.knosys.2022.109711
dc.identifier.uri https://hdl.handle.net/20.500.13091/3145
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.relation.ispartof Knowledge-Based Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Discrete optimization en_US
dc.subject Encoding schemes en_US
dc.subject Job Shop Scheduling Problem en_US
dc.subject Metaheuristic algorithms en_US
dc.subject Encoding (symbols) en_US
dc.subject Heuristic algorithms en_US
dc.subject Heuristic methods en_US
dc.subject Job shop scheduling en_US
dc.subject Signal encoding en_US
dc.subject Algorithm for solving en_US
dc.subject Coding scheme en_US
dc.subject Discrete optimization en_US
dc.subject Encoding schemes en_US
dc.subject Exact methods en_US
dc.subject Heuristics algorithm en_US
dc.subject Job shop scheduling problems en_US
dc.subject Meta-heuristics algorithms en_US
dc.subject Position value en_US
dc.subject Proper solutions en_US
dc.subject Algae en_US
dc.title Discrete Artificial Algae Algorithm for Solving Job-Shop Scheduling Problems en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Korkmaz, Sedat
gdc.author.scopusid 43361772800
gdc.author.scopusid 57200221456
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 109711
gdc.description.volume 256 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4293369820
gdc.identifier.wos WOS:000888762600005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 11.0
gdc.oaire.influence 3.046815E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.043867E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.902765
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 9
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Korkmaz, Sedat
gdc.wos.citedcount 10
relation.isAuthorOfPublication 3a35d7d4-4f08-416f-bbd9-546d6a050371
relation.isAuthorOfPublication.latestForDiscovery 3a35d7d4-4f08-416f-bbd9-546d6a050371

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0950705122008668-main.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format