Öksürük Sesi Kayıtlarından Spektral Özellikler ile Otomatik Covıd-19 Tespiti
| dc.contributor.author | Demircan, Semiye | |
| dc.date.accessioned | 2024-12-02T19:36:59Z | |
| dc.date.available | 2024-12-02T19:36:59Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | COVID-19 pandemisi son iki yıldır dünyada hızla yayılmış ve bu alanda yapılan çalışmalar da artmıştır. COVID-19 olan hastaların, hasta olmayanlardan ayırt edilmesi de pandemideki en önemli sorunlardan bir tanesidir. Gerek hastalığın erken teşhisi gerekse hasta olmayanlara bulaşma riski açısından COVID-19’un otomatik tespiti oldukça önem arz etmektedir. Hastalığın teşhisinde farklı semptomların görülebilmesi ve hatta hiç semptom görülmeden bile oluşabilmesi teşhisi çok daha zor hale getirmiştir. Bu durum hastalığın teşhisi konusunda yapılan çalışmaları arttırmıştır. Öksürük ses kayıtları gibi solunum kayıtlarında var olan önemli özellikler kullanılarak teşhis yapılabilmesi de bu uygulamalardan bir tanesidir. Bu çalışmada öksürük ses kayıtları kullanılarak otomatik COVID-19 hastalık tespiti yapılmıştır. “COVID-19 Positive and Negative Patients' Cough Recordings” (HIMANSHU) veri seti kullanılarak gerçekleştirilen çalışmada ilk olarak ses dosyalarından Mel-Frekansı Kepstrum Katsayıları (MFCC) çıkarılmıştır. Farklı sayıda olan MFCC öznitelikleri istatistiksel değerler kullanılarak eşit boyutlu hale getirilmiştir. MFCC yöntemi ile elde edilen spektral özellikler 8, 16, 32, 64 tane olacak şekilde dört farklı uzunlukta katsayılar çıkarılmıştır. Son olarak makine öğrenmesi algoritmalarından Yapay Sinir Ağları (YSA), Naive Bayes (NB), K-en Yakın Komşu Algoritması (kNN), Rastgele Orman (RO) algoritmaları kullanılarak hastalık teşhisi yapılmıştır. Yapılan çalışmada COVID veya COVID-DEGİL şeklinde 2 sınıf kullanılmıştır. Uygulama on çapraz doğrulama yöntemi ile çalıştırılmıştır. Çalışma sonunda en yüksek sınıflandırma başarası kNN algoritması ile % 99.39 olarak gerçekleştirilmiştir. | en_US |
| dc.description.abstract | The COVID-19 pandemic has spread rapidly around the world in the last two years, and studies in this area have also increased. Distinguishing patients COVID-19 or not is one of the most important problems in the pandemic. Automatic detection of COVID-19 is very important in terms of both early diagnosis of the disease and the risk of transmission to non-patients. The fact that different symptoms can be seen in the diagnosis of the disease and even occur without any symptoms has made the diagnosis much more difficult. So, the studies have focused on the diagnosis of the disease. Diagnosis can be made by using the important features of respiratory recordings, such as cough sound recordings. In this study, automatic COVID-19 disease detection was performed using cough voice recordings. In the study carried out using the “COVID-19 Positive and Negative Patients' Cough Recordings” (HIMANSHU) dataset, firstly, Mel-Frequency Cepstrum Coefficients (MFCC) were extracted from audio files. Different numbers of MFCC features were made equal in size using statistical values. The spectral features obtained by the MFCC method are 8, 16, 32, 64, and coefficients of four different lengths have been extracted. Finally, the disease diagnosis was made using Artificial Neural Networks (ANN), Naive Bayes (NB), K-Nearest Neighbor Algorithm (kNN), Random Forest (RF) algorithms from machine learning algorithms. In the study, 2 classes were used as COVID or NOT-COVID. The application was run with ten cross validation methods. Finally, the highest classification success was achieved with the kNN algorithm as 99.39%. | en_US |
| dc.description.version | Hakemli | |
| dc.format.medium | Basılı+Elektronik | |
| dc.identifier | 7948875 | |
| dc.identifier.issn | 2148-2683 | en_US |
| dc.identifier.uri | https://dergipark.org.tr/en/download/article-file/2290843 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/9373 | |
| dc.language.iso | tr | en_US |
| dc.relation | index copernicus | en_US |
| dc.relation.ispartof | European Journal of Science and Technology | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Covid-19 Tespiti | en_US |
| dc.subject | Detection COVID-19 | en_US |
| dc.subject | Öksürük Sesi | en_US |
| dc.subject | Cough Sound | en_US |
| dc.subject | MFCC | en_US |
| dc.subject | YSA | en_US |
| dc.subject | ANN | en_US |
| dc.subject | Spektral Özellikler | en_US |
| dc.subject | Spectral Features, | en_US |
| dc.title | Öksürük Sesi Kayıtlarından Spektral Özellikler ile Otomatik Covıd-19 Tespiti | en_US |
| dc.title.alternative | Automatic COVID-19 Detection with Spectral Features from Cough Sound Recordings | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | 0000-0001-8570-2412 | en_US |
| gdc.author.institutional | Demircan, Semiye | en_US |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 495 | en_US |
| gdc.description.issue | 34 | en_US |
| gdc.description.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 492 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.publishedmonth | March | |
| gdc.virtual.author | Demircan, Semiye | |
| relation.isAuthorOfPublication | faac224a-8ae6-4b7c-8600-95d2e58cfe0e | |
| relation.isAuthorOfPublication.latestForDiscovery | faac224a-8ae6-4b7c-8600-95d2e58cfe0e |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 10.31590-ejosat.1083052-2290843.pdf
- Size:
- 796.09 KB
- Format:
- Adobe Portable Document Format
- Description:
