Fog-Enabled Machine Learning Approaches for Weather Prediction in IoT Systems: a Case Study

dc.contributor.author Isler, Buket
dc.contributor.author Kaya, Sukru Mustafa
dc.contributor.author Kilic, Fahreddin Rasit
dc.date.accessioned 2025-08-10T17:19:59Z
dc.date.available 2025-08-10T17:19:59Z
dc.date.issued 2025
dc.description Kaya, Sukru Mustafa/0000-0003-2710-0063 en_US
dc.description.abstract Temperature forecasting is critical for public safety, environmental risk management, and energy conservation. However, reliable forecasting becomes challenging in regions where governmental institutions lack adequate measurement infrastructure. To address this limitation, the present study aims to improve temperature forecasting by collecting temperature, pressure, and humidity data through IoT sensor networks. The study further seeks to identify the most effective method for the real-time processing of large-scale datasets generated by sensor measurements and to ensure data reliability. The collected data were pre-processed using Discrete Wavelet Transform (DWT) to extract essential features and reduce noise. Subsequently, three wavelet-processed deep-learning models were employed: Wavelet-processed Artificial Neural Networks (W-ANN), Wavelet-processed Long Short-Term Memory Networks (W-LSTM), and Wavelet-processed Bidirectional Long Short-Term Memory Networks (W-BiLSTM). Among these, the W-BiLSTM model yielded the highest performance, achieving a test accuracy of 97% and a Mean Absolute Percentage Error (MAPE) of 2%. It significantly outperformed the W-LSTM and W-ANN models in predictive accuracy. Forecasts were validated using data obtained from the Turkish State Meteorological Service (TSMS), yielding a 94% concordance, thereby confirming the robustness of the proposed approach. The findings demonstrate that the W-BiLSTM-based model enables reliable temperature forecasting, even in regions with insufficient governmental measurement infrastructure. Accordingly, this approach holds considerable potential for supporting data-driven decision-making in environmental risk management and energy conservation. en_US
dc.identifier.doi 10.3390/s25134070
dc.identifier.issn 1424-8220
dc.identifier.scopus 2-s2.0-105010311515
dc.identifier.uri https://doi.org/10.3390/s25134070
dc.identifier.uri https://hdl.handle.net/20.500.13091/10589
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Sensors
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fog Computing en_US
dc.subject Weather Forecasting en_US
dc.subject LSTM en_US
dc.subject BILSTM en_US
dc.subject Ann en_US
dc.subject Wavelet Transforms en_US
dc.title Fog-Enabled Machine Learning Approaches for Weather Prediction in IoT Systems: a Case Study en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kaya, Sukru Mustafa/0000-0003-2710-0063
gdc.author.scopusid 57310302300
gdc.author.scopusid 57485503500
gdc.author.scopusid 59986464800
gdc.author.wosid Kaya, Şükrü/Hmd-7245-2023
gdc.author.wosid İşler, Buket/Lwk-8222-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Isler, Buket] Istanbul Topkapi Univ, Dept Software Engn, TR-34087 Istanbul, Turkiye; [Kaya, Sukru Mustafa] Istanbul Aydin Univ, Dept Comp Engn, TR-34295 Istanbul, Turkiye; [Kilic, Fahreddin Rasit] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-42250 Konya, Turkiye en_US
gdc.description.issue 13 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 4070
gdc.description.volume 25 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4411802139
gdc.identifier.pmid 40648325
gdc.identifier.wos WOS:001527569200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords BiLSTM
gdc.oaire.keywords wavelet transforms
gdc.oaire.keywords Chemical technology
gdc.oaire.keywords TP1-1185
gdc.oaire.keywords fog computing
gdc.oaire.keywords weather forecasting
gdc.oaire.keywords LSTM
gdc.oaire.keywords ANN
gdc.oaire.keywords Article
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.27
gdc.opencitations.count 0
gdc.plumx.mendeley 28
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 0

Files