Fog-Enabled Machine Learning Approaches for Weather Prediction in IoT Systems: a Case Study
| dc.contributor.author | Isler, Buket | |
| dc.contributor.author | Kaya, Sukru Mustafa | |
| dc.contributor.author | Kilic, Fahreddin Rasit | |
| dc.date.accessioned | 2025-08-10T17:19:59Z | |
| dc.date.available | 2025-08-10T17:19:59Z | |
| dc.date.issued | 2025 | |
| dc.description | Kaya, Sukru Mustafa/0000-0003-2710-0063 | en_US |
| dc.description.abstract | Temperature forecasting is critical for public safety, environmental risk management, and energy conservation. However, reliable forecasting becomes challenging in regions where governmental institutions lack adequate measurement infrastructure. To address this limitation, the present study aims to improve temperature forecasting by collecting temperature, pressure, and humidity data through IoT sensor networks. The study further seeks to identify the most effective method for the real-time processing of large-scale datasets generated by sensor measurements and to ensure data reliability. The collected data were pre-processed using Discrete Wavelet Transform (DWT) to extract essential features and reduce noise. Subsequently, three wavelet-processed deep-learning models were employed: Wavelet-processed Artificial Neural Networks (W-ANN), Wavelet-processed Long Short-Term Memory Networks (W-LSTM), and Wavelet-processed Bidirectional Long Short-Term Memory Networks (W-BiLSTM). Among these, the W-BiLSTM model yielded the highest performance, achieving a test accuracy of 97% and a Mean Absolute Percentage Error (MAPE) of 2%. It significantly outperformed the W-LSTM and W-ANN models in predictive accuracy. Forecasts were validated using data obtained from the Turkish State Meteorological Service (TSMS), yielding a 94% concordance, thereby confirming the robustness of the proposed approach. The findings demonstrate that the W-BiLSTM-based model enables reliable temperature forecasting, even in regions with insufficient governmental measurement infrastructure. Accordingly, this approach holds considerable potential for supporting data-driven decision-making in environmental risk management and energy conservation. | en_US |
| dc.identifier.doi | 10.3390/s25134070 | |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.scopus | 2-s2.0-105010311515 | |
| dc.identifier.uri | https://doi.org/10.3390/s25134070 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/10589 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Sensors | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fog Computing | en_US |
| dc.subject | Weather Forecasting | en_US |
| dc.subject | LSTM | en_US |
| dc.subject | BILSTM | en_US |
| dc.subject | Ann | en_US |
| dc.subject | Wavelet Transforms | en_US |
| dc.title | Fog-Enabled Machine Learning Approaches for Weather Prediction in IoT Systems: a Case Study | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Kaya, Sukru Mustafa/0000-0003-2710-0063 | |
| gdc.author.scopusid | 57310302300 | |
| gdc.author.scopusid | 57485503500 | |
| gdc.author.scopusid | 59986464800 | |
| gdc.author.wosid | Kaya, Şükrü/Hmd-7245-2023 | |
| gdc.author.wosid | İşler, Buket/Lwk-8222-2024 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Konya Technical University | en_US |
| gdc.description.departmenttemp | [Isler, Buket] Istanbul Topkapi Univ, Dept Software Engn, TR-34087 Istanbul, Turkiye; [Kaya, Sukru Mustafa] Istanbul Aydin Univ, Dept Comp Engn, TR-34295 Istanbul, Turkiye; [Kilic, Fahreddin Rasit] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-42250 Konya, Turkiye | en_US |
| gdc.description.issue | 13 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 4070 | |
| gdc.description.volume | 25 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4411802139 | |
| gdc.identifier.pmid | 40648325 | |
| gdc.identifier.wos | WOS:001527569200001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | BiLSTM | |
| gdc.oaire.keywords | wavelet transforms | |
| gdc.oaire.keywords | Chemical technology | |
| gdc.oaire.keywords | TP1-1185 | |
| gdc.oaire.keywords | fog computing | |
| gdc.oaire.keywords | weather forecasting | |
| gdc.oaire.keywords | LSTM | |
| gdc.oaire.keywords | ANN | |
| gdc.oaire.keywords | Article | |
| gdc.oaire.popularity | 2.7494755E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.27 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 28 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.wos.citedcount | 0 |
